Tìm x,y là số nguyên biết:2^x+2^y=2^(x+y)
Câu 1: Tìm số nguyên x;y biết (x - 5) mũ 23 . (y + 2) mũ 7 = 0
Câu 2: Tìm giá trị nhỏ nhất của biểu thức A = (x - 2) mũ 2 + /y + 3/ + 7
Câu 3: Tìm số nguyên x sao cho 5 + x mũ 2 là bội của x + 1
Câu 4: Tìm các số nguyên x;y biết 5 + (x-2) . (y +1) = 0
Câu 5: Tìm x thuộc Z biết x - 1 là ước của x + 2
Câu 6: Tìm số nguyên m để m - 1 là ước của m + 2
Câu 7: Tìm x thuộc Z biết (x mũ 2 - 4) . (7 - x) = 0
Các bạn giúp mình giải với nhé! Đúng thì mình k đúng nhé. Cảm ơn các bạn nhiều lắm. Yêu cả nhà.
\(1.\left(x-5\right)^{23}.\left(y+2\right)^7=0\)
\(\Rightarrow\hept{\begin{cases}\left(x-5\right)^{23}=0\\\left(y+2\right)^7=0\end{cases}\Rightarrow\hept{\begin{cases}\left(x-5\right)^{23}=0^{23}\\\left(y+2\right)^7=0^7\end{cases}}}\)\(\Rightarrow\hept{\begin{cases}x-5=0\\y+2=0\end{cases}\Rightarrow\hept{\begin{cases}x=0+5\\y=0-2\end{cases}}}\)\(\Rightarrow\hept{\begin{cases}x=5\\y=-2\end{cases}}\)
Vậy \(\left(x;y\right)=\left(5;-2\right)\)
2. \(A=\left(x-2\right)^2+|y+3|+7\)
Ta có :
\(\hept{\begin{cases}\left(x-2\right)^2\ge0\forall x\\|y+3|\ge0\forall y\end{cases}}\)
\(\Rightarrow\left(x-2\right)^2+|y+3|\ge0\forall x;y\)
\(\Rightarrow\left(x-2\right)^2+|y+3|+7\ge7\forall x;y\)
\(\Rightarrow A\ge7\forall x;y\)
Dấu bằng xảy ra
\(\Leftrightarrow\hept{\begin{cases}\left(x-2\right)^2=0\\|y+3|=0\end{cases}\Leftrightarrow\hept{\begin{cases}x-2=0\\y+3=0\end{cases}\Leftrightarrow}\hept{\begin{cases}x=2\\y=-3\end{cases}}}\)
Vậy GTNN của A là 7 khi \(\left(x;y\right)=\left(2;-3\right)\)
tìm hai số x, y biết x, y là hai số nguyên dương và (x : y)^2 = 16/9; x^2 + y^2 = 100
Ta có :
\(\left(\frac{x}{y}\right)^2=\frac{16}{9}\)\(\Rightarrow\frac{x^2}{y^2}=\frac{16}{9}\Rightarrow\frac{x^2}{16}=\frac{y^2}{9}\)
Áp dụng tính chất dãy tỉ số bằng nhau , ta có :
\(\frac{x^2}{16}=\frac{y^2}{9}=\frac{x^2}{4^2}=\frac{y^2}{3^2}=\frac{x^2+y^2}{16+9}=\frac{100}{25}=4=\left(\pm2\right)^2\)
\(\Rightarrow\hept{\begin{cases}x^2=\left(±2\right)^2.4^2\\y^2=\left(\pm2\right)^2.3^2\end{cases}}\)\(\Rightarrow\hept{\begin{cases}x^2=\left(\pm2.4\right)^2\\y^2=\left(\pm2.3\right)^2\end{cases}}\)\(\Rightarrow\hept{\begin{cases}x^2=\left(\pm8\right)^2\\y^2=\left(\pm6\right)^2\end{cases}}\Rightarrow\hept{\begin{cases}x=\pm8\\y=\pm6\end{cases}}\)
Mà x và y cùng dấu => ( x , y ) ∈ { ( -8 ; -6 ) ; ( 8 ; 6 ) }
Bài 1, Tìm giá trị nguyên x biết, E= -5-x/x-2 đạt giá trị nguyên
Bài 2, Tìm x,y thuộc N biết, 25-y^2=8x-2012^2
Bài 3, a) Tìm các số nguyên tố x,y sao cho: 51x+26y=2000
b) Tìm STN x,y biết: 7.(x-2004)^2=23-y^2
c) Tìm x,y nguyên: xy+3x-y=6
d) Tìm mọi số nguyên tố thỏa mãn: x^2+2y^2=1. ai làm nhanh hộ mk tich nha. cần mai luôn rồi. Xin trân trọng cảm ơn!
Bài 1:
Để E nguyên thì \(x+5⋮x-2\)
\(\Leftrightarrow x-2\in\left\{1;-1;7;-7\right\}\)
hay \(x\in\left\{3;1;9;-5\right\}\)
giúp mình với ạ cần luôn nhá. mk sẽ tick cho!
Tìm x , y biết x , y là số nguyên tố.
2.y.( x^2 + 1) + X^2
a) Tìm cặp số nguyên (x;y) để B = 1/x-y : x+2 / 2(x-y) là số nguyên.
b) Tìm x biết: |x(x^2 - 5/4)| = x.
\(\left|x\left(x^2-\frac{5}{4}\right)\right|=x\)
\(\Leftrightarrow\hept{\begin{cases}x\left(x^2-\frac{5}{4}\right)=x\\x\left(x^2-\frac{5}{4}\right)=-x\end{cases}}\Leftrightarrow\hept{\begin{cases}x^2-\frac{5}{4}=\frac{x}{x}\\x^2-\frac{5}{4}=-\frac{x}{x}\end{cases}}\Leftrightarrow\hept{\begin{cases}x^2-\frac{5}{4}=1\\x^2-\frac{5}{4}=-1\end{cases}}\Leftrightarrow\hept{\begin{cases}x^2=\frac{9}{4}\\x^2=\frac{1}{4}\end{cases}}\Leftrightarrow\hept{\begin{cases}x=\pm\frac{3}{2}\\x=\pm\frac{1}{2}\end{cases}}\)
vậy ....
\(\left|x\left(x^2-\frac{5}{4}\right)\right|=x\Leftrightarrow\left|x^3-\frac{5}{4}x\right|=x\)
\(\Leftrightarrow\hept{\begin{cases}x^3-\frac{5}{4}x=x\\x^3-\frac{5}{4}x=-x\end{cases}\Leftrightarrow\hept{\begin{cases}x\left(x^2-\frac{5}{4}\right)=x\\x\left(x^2-\frac{5}{4}\right)=-x\end{cases}}}\)
\(\Leftrightarrow\hept{\begin{cases}x^2-\frac{5}{4}=\frac{x}{x}\\x^2-\frac{5}{4}=-\frac{x}{x}\end{cases}\Leftrightarrow\hept{\begin{cases}x^2-\frac{5}{4}=1\\x^2-\frac{5}{4}=-1\end{cases}}}\)
\(\Leftrightarrow\hept{\begin{cases}x^2=\frac{9}{4}\\x^2=\frac{1}{4}\end{cases}\Leftrightarrow\hept{\begin{cases}x=\pm\frac{3}{2}\\x=\pm\frac{1}{2}\end{cases}}}\)
cho x là số nguyên tố và y là hợp số. Biết rằng x < y và 2^x * 2^y+1= 256. tìm x và y
2^x * 2^y + 1 = 256
2^ x + y + 1 = 2^8
=> x + y + 1 = 8
=> x + y = 7
Các hợp số nhỏ hơn 7 gồm : 4,6
Neu y = 4 => x = 3 ( thoa man )
Neu y = 6 => x = 1 ( loai , do ko phai so nguyen to )
Vay x = 3 ; y = 4
Cho hai số tự nhiên a và b. Biết số a chia cho 7 thì dư 5, số b chia cho 7 thì dư 3. Hỏi a + b chia 7 thì dư bao nhiêu ?
BÀi 1:Tìm các cặp số nguyên x,y biết 2x2+y2+xy=2(x+y)
Bài 2:Tìm các cặp số nguyên dương x,y biết x2+y2=3(x+y)
Bài 2: Giả sử tồn tại x,y nguyên dương t/m đề, khi đó pt cho tương đương:
\(4x^2+4y^2-12x-12y=0\Leftrightarrow\left(2x+3\right)^2+\left(2y+3\right)^2=18\)
Ta thấy: \(18=9+9=3^2+3^2\). Mà x,y thuộc Z+ nên \(\hept{\begin{cases}2x+3=3\\2y+3=3\end{cases}\Leftrightarrow}\hept{\begin{cases}x=0\\y=0\end{cases}}\)
Vậy cặp nghiệm nguyên t/m pt là (x;y) = (0;0)
Làm lại bài 2 :v (P/S: Bạn bỏ bài kia đi nhé)
\(4x^2+4y^2-12x-12y=0\Leftrightarrow\left(2x-3\right)^2+\left(2y-3\right)^2=18\)
Ta thấy: \(18=9+9=3^2+3^2\). Mà x,y thuộc Z+ nên \(\hept{\begin{cases}2x-3=3\\2y-3=3\end{cases}\Leftrightarrow}\hept{\begin{cases}x=3\\y=3\end{cases}}\)
Vậy (x;y) = (3;3)
tìm hai số x ,y .Biết x,y là hai số nguyên dương và (x:y)^2=16/9;x^2+y^2=100
Ta có \(\left(\frac{x}{y}\right)^2=\frac{16}{9}=\left(\pm\frac{4}{3}\right)^2\)
\(\frac{x}{y}\)dương nên \(\frac{x}{y}=\frac{4}{3}\Rightarrow x=\frac{4y}{3}\)
Thay \(x=\frac{4y}{3}\)vào \(x^2+y^2=100\)ta được
\(\left(\frac{4y}{3}\right)^2+y^2=100\)
\(\frac{16}{9}.y^2+y^2=100\)
\(y^2.\left(\frac{16}{9}+1\right)=100\)
\(y^2.\frac{25}{9}=100\)
\(y^2=100:\frac{25}{9}=36\)
\(y=6\)( vì y dương )
a: Tìm số tự nhiên x sao cho x+15 là bội của x+3
b:tìm các số nguyên x,y sao cho {x+1}.{y-2}=3
c:tìm các số nguyên x sao cho [x+2].[y-1]=2
g:tìm 2 số tự nhiễn,y biết x+y=12 va ƯCLN[x,y]=5
h:tim 2 số tự nhiên x,y biết x+y=32 và ƯCLN=[x,y]=8
a) x+15 là bội của x+3
\(\Rightarrow\)x+15\(⋮\)x+3
\(\Rightarrow\)x+3+12\(⋮\)x+3
x+3\(⋮\)x+3
\(\Rightarrow\)12\(⋮\)x+3
\(\Rightarrow x+3\inƯ\left(12\right)=\left\{\pm1;\pm2;\pm3;\pm4;\pm12\right\}\)
\(\Rightarrow x\in\left\{-4;-2;-5;-1;-6;0;-7;1;-15;9\right\}\)
Vậy x\(\in\){-4;-2;-5;-1;-6;0;-7;1;-15;9}
b) (x+1).(y-2)=3
\(\Rightarrow\)x+1 và y-2 thuộc Ư(3)={1;-1;3;-3}
Có :
x+1 | 1 | -1 | 3 | -3 |
x | 0 | -2 | 2 | -4 |
y+2 | 3 | -3 | 1 | -1 |
y | 1 | -5 | -1 | -3 |
Vậy (x;y)\(\in\){(0;1);(-2;-5);(2;-1);(-4;-3)}
Câu c tương tự câu b
g) Ta có : (x,y)=5
\(\Rightarrow\hept{\begin{cases}x⋮5\\y⋮5\end{cases}}\)\(\Rightarrow\hept{\begin{cases}x=5m\\y=5n\\\left(m,n\right)=1\end{cases}}\)
Mà x+y=12
\(\Rightarrow\)5m+5n=12
\(\Rightarrow\)5(m+n)=12
\(\Rightarrow\)m+n=\(\frac{12}{5}\)
Bạn có thể xem lại đề được không ạ? Vì đến đây 12 không chia hết cho 5 nhé! Phần h bạn nên viết lại đề vì ƯCLN=[x,y]=8 tớ không hiểu lắm...
Ehhhxjeiigcjivjfibhfjfjidifofidbgfjcufychcnl Ochocinco and the new year has a nice 👌👍✨👏🙂that is the same thing about this place of the year for hiiepj