Chứng minh rằng số có dạng abcabc (trên đầu có dấu gạch ngang) chia hết cho 143
Chứng minh rằng số có dạng abcabc( có dấu gạch trên đầu) chia hết cho 143
Ta có thành phần abc trong số abcabc được lặp lại 2 lần để tạo ra số này. Ta có ví dụ như thành phần 123 lặp lại 2 lần tạo nên số trên thành số 123123 giống như số trên và kết quả khi chia cho 143 là chia hết, kết quả là 861. Từ một ví dụ đó, ta suy ra rằng số abcabc hoàn tòan có thể chia hết cho 143.
P/S: Chúc bạn hok tốt !!!
ta có: abcabc = abc x 1000 + abc = abc x 1001
Ta thấy : 1001 chia hết cho 143
=> abc x 1001 chia hết cho 143
=> abcabc chia hết cho 143
HOK TOT
Chứng tỏ rằng số có dạng abcabc ( có gạch ngang trên đầu)bao giờ cũng chia hết cho 11
abcabc=abc.1001=abc.91.11 chia hết cho 11
tich dung cho minh nha
abcabc = 1001 x abc
= 11 x 91 x abc
luôn luôn chia hết cho 11
vì abcabc= abc.1001 =abc.91.11 >abcabc luôn chia hết cho 11
Cho p và p+4 là các số nguyên tố (p>3). chứng tỏ rằng p+8 là hợp số.
Chứng tỏ rằng các số có dạng abcabc( có gạch ngang trên đầu ) chia hết cho ít nhất 3 số nguyên tố.
Mọi người cứ làm từng câu một, vậy tui làm cả 2 câu nhé!
Câu 1:
p là số nguyên tố lớn hơn 3 => p=3k+1 hoặc p=3k+2
Nếu p=3k+2
=>p+4=3k+2+4=3k+6 (loại vì p+4 cũng là số nguyên tố)
=>p=3k+1
=>p+8=3k+1+8=3k+9 là hợp số (đpcm)
Câu 2:
Ta có: abcabc=abc.1001=abc.7.11.13
Vì 7;11;13 là 3 số nguyên tố nên abcabc chia hết cho ít nhất 3 số nguyên tố (đpcm)
Giả sử p là 1 số nguyên tố >3, do p không chia hết cho 3 nên p có dạng 3k + 1 hoặc 3k + 2 nhưng do p +4 là số nguyên tố nên p không thể có dạng 3k + 2 vậy p có dạng 3k +1. Vậy p + 8 = 3k + 9 chia hết cho 3 nên nó là hợp số.
Phần 1 bạn Kun làm rồi. Mình làm tiếp phần 2.
\(\overline{abcabc}=\overline{abc}\cdot1001=7\cdot11\cdot13\cdot\overline{abc}\)
Vậy \(\overline{abcabc}\)chia hết ít nhất cho 3 số nguyên tố là 7;11;13.
Cho p và p+4 là các số nguyên tố (p>3). chứng tỏ rằng p+8 là hợp số.
Chứng tỏ rằng các số có dạng abcabc( có gạch ngang trên đầu ) chia hết cho ít nhất 3 số nguyên tố.
4. chứng tỏ số :
a. aaa có dấu gạch trên đầu chia hết cho 37
b. abcabc có dấu gạch trên đầu chia hết cho 11
c. aaaaaa có dấu gạch trên đầu chia hết cho 7
5. chứng tỏ :
ab có dấu gạch trên đầu - ba có dấu gạch trên đầu chia hết cho 9
a. aaa có dấu gạch trên đầu chia hết cho 37
Ta có aaa=a.37
aaa= a.3.37 chia hết cho 37
Hk tốt
Chứng tỏ rằng số có dạng abcabc gạch đầu bao giờ cũng chia hết cho 11
Ta có: \(\overline{abcabc}=\overline{abc}.1000+\overline{abc}=\overline{abc}.\left(1000+1\right)\)
\(\Rightarrow\overline{abc}.1001=\overline{abc}.91.11\)
Vì \(11⋮11\Rightarrow\overline{abc}.91.11⋮11\)
Vậy số \(\overline{abcabc}\) lúc nào cũng chia hết cho 11
abcabc = 1000 . abc + abc = 1001 . abc = 11 . 91 . abc
Vậy abcabc chia hết cho 11.
ta có abcabc=100000a+10000b+1000b+100a+10b+c
=100100a+10010b+1001c
=1001(100a+10b+c)
=7.143.(100a+10b+c)
=> tích trên có thừa số 7
=> chia hết cho 7
=> abcabc chia hết cho 7
chứng minh rằng : số 7;11;13 là ước của số có dạng abcabe (có dấu gạch ngang trên đầu)
Sửa đề: abcabc
Ta có:
abcabc = 1001.abc
= 7.143.abc \(⋮7\)
= 11.91.abc \(⋮11\)
= 33.77.abc \(⋮\)13
Vậy:..............
tìm số tự nhieencos tận cùng =3, biết rằng nếu xóa chữ số hàng đơn vị thì số đó giảm đi 1992 đơn vị
chứng minh rằng : A là một lũy thừa của 2
với A = 4+2^2+2^3+2^4+...+2^30
Chứng minh dấu hiệu chia hết cho 2 : 5 : 9 cho số tự nhiên gồm 4 chữ số ( dạng abcd(gạch ngang trên đầu) )
Chứng minh dấu hiệu chia hết cho 2 : 5 : 9 cho số tự nhiên gồm 4 chữ số ( dạng abcd(gạch ngang trên đầu) )