Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
rororonoazoro
Xem chi tiết

Nhân cả hai tử của \(A\)và \(B\)với 2 , ta được :

\(10A=10.\left(\frac{10^{2016}+1}{10^{2017}+1}\right)=\frac{10^{2017}+1+9}{10^{2017}+1}=1+\frac{9}{2^{2017}+1}\)

\(10B=10\left(\frac{10^{2017}+1}{10^{2018}+1}\right)=\frac{10^{2018}+10}{10^{2018}+1}=\frac{10^{2018}+1+9}{10^{2018}}=1+\frac{9}{10^{2018}+1}\)

Vì \(1=1;9=9\)

\(\Rightarrow\)Ta so sánh mẫu , ta có:

\(10^{2017}< 10^{2018}\)

\(\Rightarrow10^{2017}+1< 10^{2018}+1\)

\(\Rightarrow1+\frac{9}{10^{2017}+1}>1+\frac{9}{10^{2018}+1}\)

\(\Rightarrow10A>10B\)

Hay \(A>B\)

Nguyễn Đức Hiền
Xem chi tiết
Nguyễn Vĩnh Tường
15 tháng 3 2018 lúc 20:13

Anh hiền àaaaaaaaaaaaaaaaaaaaaaaaaa

Nguyễn Vĩnh Tường
15 tháng 3 2018 lúc 20:13

Tường đây

Phùng Minh Quân
15 tháng 3 2018 lúc 20:18

Ta có công thức : 

\(\frac{a}{b}>\frac{a+c}{b+c}\) \(\left(\frac{a}{b}>1;a,b,c\inℕ^∗\right)\)

Áp dụng vào ta có : 

\(B=\frac{10^{2018}+1}{10^{2017}+1}>\frac{10^{2018}+1+9}{10^{2018}+1+9}=\frac{10^{2018}+10}{10^{2018}+10}=\frac{10\left(10^{2017}+1\right)}{10\left(10^{2016}+1\right)}=\frac{10^{2017}+1}{10^{2016}+1}=A\)

\(\Rightarrow\)\(B>A\) hay \(A< B\)

Vậy \(A< B\)

Chúc bạn học tốt ~ 

Quách Trung Kiên
Xem chi tiết
Lucy Heartfilia
Xem chi tiết
Huỳnh Phước Mạnh
21 tháng 4 2018 lúc 20:33

Ta có: \(\hept{\begin{cases}A=\frac{10^{2016}+1}{10^{2017}+1}\\B=\frac{10^{2017}+1}{10^{2018}+1}\end{cases}}\)

\(\Rightarrow\hept{\begin{cases}10A=\frac{10^{2017}+10}{10^{2017}+1}=\frac{10^{2017}+1+9}{10^{2017}+1}=1+\frac{9}{10^{2017}+1}\\10B=\frac{10^{2018}+10}{10^{2018}+1}=\frac{10^{2018}+1+9}{10^{2018}+1}=1+\frac{9}{10^{2018}+1}\end{cases}}\)

Vì \(\frac{9}{10^{1017}+1}>\frac{9}{10^{2018}+1}\)

nên \(10A>10B\Rightarrow A>B\)

Huỳnh Quang Sang
21 tháng 4 2018 lúc 20:34

\(A=\frac{10^{2016}+1}{10^{2017}+1}\Rightarrow10A=\frac{10\cdot(10^{2016}+1)}{10^{2017}+1}=\frac{10^{2017}+10}{10^{2017}+1}\)

\(A=\frac{10^{2017}+1+9}{10^{2017}+1}=\frac{10^{2017}+1}{10^{2017}+1}+\frac{9}{10^{2017}+1}=1+\frac{9}{10^{2017}+1}\)

Vì \(10^{2016}+1< 10^{2017}+1\)

\(\Rightarrow\frac{9}{10^{2016}+1}>\frac{9}{10^{2017}+1}\)

\(\Rightarrow\)\(1+\frac{9}{10^{2016}+1}>1+\frac{9}{10^{2017}+1}\)

....

Khoa Đoàn Đăng
21 tháng 4 2018 lúc 20:47

A= \(\frac{10^{2016}+1}{10^{2016}+1}=\frac{10^{2016}+1}{10\cdot10^{2016}+1}=\frac{1}{10}\cdot\frac{10^{2016}+1}{10^{2016}+1}=\frac{1}{10}\)(1)

B=\(\frac{10^{2017}+1}{10^{2018}+1}=\frac{10^{2017}+1}{10\cdot10^{2017}+1}=\frac{1}{10}\cdot\frac{10^{2017}+1}{10^{2017}+1}=\frac{1}{10}\)(2)

Từ (1) và (2) \(\Rightarrow\)A=B

Thanh Thảo Trịnh
Xem chi tiết
nguyen duc thang
15 tháng 3 2018 lúc 20:48

Ta có :

A = \(\frac{10^{2017}+1}{10^{2018}+1}\)< 1 => A < \(\frac{10^{2017}+1+9}{10^{2018}+1+9}\)\(\frac{10^{2017}+10}{10^{2018}+10}\)\(\frac{10^{2016}+1}{10^{2017}+1}\)= B

Vậy A < B

Bùi Hồng Anh
15 tháng 3 2018 lúc 20:51

A<B. lời giải thích khó viết lắm nên bạn tự tìm cách làm nhé

Quách Trung Kiên
Xem chi tiết
Huỳnh Thị Mỹ Duyên
Xem chi tiết
Oo Bản tình ca ác quỷ oO
14 tháng 4 2016 lúc 9:48

ta có: 10A = \(\frac{10^{2017}+1+9}{10^{2017}+1}=1+\frac{9}{10^{2017}+1}\)

10B = \(\frac{10^{2018}+1+9}{10^{2018}+1}=1+\frac{9}{10^{2018}+1}\)

\(vì\frac{9}{10^{2017}+1}>\frac{9}{10^{2018}+1}\) => 10A > 10B => A > B

Oo Bản tình ca ác quỷ oO
14 tháng 4 2016 lúc 9:41

A > B nhé bn!!!!!!!!!!!!!!

6578

Huỳnh Thị Mỹ Duyên
14 tháng 4 2016 lúc 9:45

bn đọc kĩ đề đi

Trần Tích Thường
Xem chi tiết
tth_new
17 tháng 2 2019 lúc 19:40

Ta có: \(B=\frac{10^2\left(10^{2017}+1\right)}{10^2\left(10^{2016}+1\right)}=\frac{10^{2019}+1+99}{10^{2018}+1+99}\)

Do phân số \(A=\frac{10^{2019}+1}{10^{2018}+1}>1\).Áp dụng BĐT \(\frac{a}{b}>1\Rightarrow\frac{a}{b}>\frac{a+m}{b+m}\left(m>0\right)\).

Ta có: \(A=\frac{10^{2019}+1}{10^{2018}+1}>\frac{10^{2019}+1+99}{10^{2018}+1+99}=B\)

Vậy \(A>B\)

tth_new
17 tháng 2 2019 lúc 19:42

C/m BĐT phụ nè: \(\frac{a}{b}>1\Rightarrow\frac{a}{b}>\frac{a+m}{b+m}\left(m>0\right)\)

\(\Leftrightarrow a\left(b+m\right)>b\left(a+m\right)\)

\(\Leftrightarrow ab+am>ab+bm\)

\(\Leftrightarrow am>bm\Leftrightarrow a>b\) (đúng,do \(\frac{a}{b}>1\))

thungan2102006
Xem chi tiết
Lê Quỳnh Trang
9 tháng 5 2018 lúc 22:19

\(+)A=\frac{10^{2016}+2018}{10^{2017}+2018}\)

\(10A=\frac{10^{2017}+20180}{10^{2017}+2018}=1+\frac{18162}{10^{2017}+2018}\left(1\right)\)

\(+)10B=\frac{10^{2018}+20180}{10^{2018}+2018}=1+\frac{18162}{10^{2018}+2018}\left(2\right)\)

Từ (1),(2)=> \(\frac{18162}{10^{2017}+2018} >\frac{18162}{10^{2018}+2018}\)

=> 10A>10B

=>A>B

Lan Nguyễn Thị
9 tháng 5 2018 lúc 22:22

k đúng cho mình đi, mình giải cho.