Phân tích đa thức đa thành nhân tử :
\(x^4-x^3-10x^2+6x+8\)
bài 1: Phân tích đa thức thành nhân tử : x^2-6x+8
bài 2: Phân tích đa thức thành nhân tử : x^8+x^7+1
Bài 1 :
\(x^2-6x+8=x^2-2x-4x+8=x\left(x-2\right)-4\left(x-2\right)=\left(x-4\right)\left(x-2\right)\)
Bài 2 :
\(x^8+x^7+1=x^8+x^7+x^6+x^5+x^4+x^3+x^2+x+1-x^6-x^5-x^4-x^3-x^2-x\)
\(=x^6\left(x^2+x+1\right)+x^3\left(x^2+x+1\right)+x^2+x+1-x^4\left(x^2+x+1\right)-x\left(x^2+x+1\right)\)
=\(\left(x^2+x+1\right)\left(x^6+x^3+1-x^4-x\right)\)
Tick đúng nha
Phân tích đa thức đa thức thành nhân tử
x^4+6x^3+11x^2+6x+1
đặt y=x2+1
=>y2=(x2+1)2
y2=x4+2x2+1
đặt P(x)=x^4+6x^3+11x^2+6x+1
=x4+2x2+1+6x3+6x+9x2
=x4+2x+1+6x(x2+1)+9x2
thay y2=x4+2x2+1 và y=x2+1 ta được
Q(y)=y2+6xy+9x2
=(y+3x)2
thay y=x2+1 ta được:
(x2+3x+1)2
vậy x^4+6x^3+11x^2+6x+1=(x2+3x+1)2
bài 1: phân tích đa thức thành nhân tử bằng cách ( phân tích đa thức bậc 2 )
a, x^2 + 5x + 4
b, x^2 - 6x + 5
c, x^2 + 7x + 12
d, 2x^2 - 5X + 3
e, 7x - 3x^2 - 4
f, x^2 - 10x + 16
a, x^2 + 5x +4
= x^2 + 1x + 4x + 4
= (x^2 + 1x) + (4x + 4)
= x ( x + 1 ) + 4 ( x + 1 )
= (x + 1) (x + 4)
b, x^2 - 6x + 5
= x^2 - 1x - 5x + 5
= (x^2 - 1x) - (5x - 5)
= x (x - 1) - 5 (x - 1)
= (x - 1) (x - 5)
c, x^2 + 7x + 12
= x^2 + 3x + 4x + 12
= (x^2 + 3x) + (4x + 12)
= x (x + 3) + 4 (x + 3)
= (x + 3) (x + 4)
d, 2x^2 - 5x + 3
= 2^x2 - 2x - 3x + 3
= 2x (x - 1) - 3 (x - 1)
= (x-1) (2x - 3)
e, 7x - 3x^2 - 4
= 3x + 4x - 3x^2 - 4
= (3x - 3x^2) + (4x - 4)
= 3x (1 - x) + 4 (x - 1)
= 3x (1-x) - 4 (1 - x)
= (1 - x) (3x - 4)
f, x^2 - 10x + 16
= x^2 - 2x - 8x + 16
= (x^2 - 2x) - (8x - 16)
= x (x - 2) - 8 (x - 2)
= (x - 2) (x - 8)
a, (x+1)(x+4)
b,(x-5)(x-1)
c,(x+3)(x+4)
d,(2x-3)(x-1)
e,(-3x+4)(x-1)
f, (x-8)(x-2)
phân tích đa thức thành nhân tử x^3+y^3+6x^2+12x+8
\(=\left(x+2\right)^3+y^3\)
\(=\left(x+2+y\right)\left(x^2+4x+4-xy-2y+y^2\right)\)
phân tích đa thức thành nhân tử
a) \(x^4+10x^3+26x^2+10x+1 \)
b) \(x^4+x^3-4x^2+x+1\)
Giúp mink với
Lời giải:
a.
$x^4+10x^3+26x^2+10x+1$
$=(x^4+10x^3+25x^2)+x^2+10x+1$
$=(x^2+5x)^2+2(x^2+5x)+1-x^2$
$=(x^2+5x+1)^2-x^2=(x^2+5x+1-x)(x^2+5x+1+x)$
$=(x^2+4x+1)(x^2+6x+1)$
b.
$x^4+x^3-4x^2+x+1$
$=(x^4-x^2)+(x^3-x^2)+(x-x^2)+(1-x^2)$
$=x^2(x-1)(x+1)+x^2(x-1)-x(x-1)-(x-1)(x+1)$
$=(x-1)[x^2(x+1)+x^2-x-(x+1)]$
$=(x-1)(x^3+2x^2-2x-1)$
$=(x-1)[(x^3-1)+(2x^2-2x)]=(x-1)[(x-1)(x^2+x+1)+2x(x-1)]$
$=(x-1)(x-1)(x^2+x+1+2x)=(x-1)^2(x^2+3x+1)$
1.phân tích đa thức thành nhân tử:
a, x^3-6x^2+12x-8
b, 116x^2-9.(x+1)^2
c, x^3-2x^2-x+2
d, -6x^2-5y+3xy+10x
a) x2 + 6x + 9 = x2 + 2 . x . 3 + 32 = (x + 3)2
b) 10x – 25 – x2 = -(-10x + 25 +x2) = -(25 – 10x + x2)
= -(52 – 2 . 5 . x – x2) = -(5 – x)2
c) 8x3 - 1/8 = (2x)3 – (1/2)3 = (2x - 1/2)[(2x)2 + 2x . 12 + (1/2)2]
= (2x - 1/2)(4x2 + x + 1/4)
d)1/25x2 – 64y2 = (1/5x)2(1/5x)2- (8y)2 = (1/5x + 8y)(1/5x - 8y)
phân tích đa thức thành nhân tử:
x^3+4^2+x-6
x^3+y^3+6x^2+12x+8
a, Cách 1 : \(x^2+5x+6=x^2+2x+3x+6=\left(x+2\right)\left(x+3\right)\)
Cách 2 : \(x^2+5x+6=x^2+2.\frac{5}{2}x+\frac{25}{4}-\frac{25}{4}+6\)
\(=\left(x+\frac{5}{2}\right)^2-\frac{1}{4}=\left(x+2\right)\left(x+3\right)\)
b, Cách 1 : \(x^2-x-6=x^2+2x-3x-6=\left(x-3\right)\left(x+2\right)\)
Cách 2 : \(x^2-x-6=x^2-x+\frac{1}{4}-\frac{1}{4}-6=\left(x-\frac{1}{2}\right)^2-\frac{25}{4}=\left(x-3\right)\left(x+2\right)\)
c, Cách 1 : \(x^2+6x+8=x^2+4x+2x+8=\left(x+2\right)\left(x+4\right)\)
Cách 2 : \(x^2+6x+8=x^2+6x+9-1=\left(x+3\right)^2-1=\left(x+2\right)\left(x+4\right)\)
d, Cách 1 : \(x^2-2x-8=x^2+2x-4x-8=\left(x-4\right)\left(x+2\right)\)
Cách 2 : \(x^2-2x-8=x^2-2x+1-9=\left(x-1\right)^2-9=\left(x-4\right)\left(x+2\right)\)
Phân tích đa thức thành nhân tử
x^4-x^3-10x^2+2x+4
đặt x bình ra ngoài
nhóm x^2 và 4/x^2 ; x và 2/x
xong đặt ẩn phụ là ra nhé