cho tam giác ABC , Góc A=120• , góc B- Góc C=30• đường trung trực của BC cắt AC tại D cắt tia đối của AB tại E
a) Tính các góc của tám giác ABC
b) Chứng minh : góc EBD = Góc ECD =30•
c) chứng minh tam giác BED= tam giác ECD
cho tam giác ABC , Góc A=120• , góc B- Góc C=30• đường trung trực của BC cắt AC tại D cắt tia đối của AB tại E
a) Tính các góc của tám giác ABC
b) Chứng minh : góc EBD = Góc ECD =30•
c) chứng minh tam giác BED= tam giác ECD
a/ ^B+^C=180-^A=180-120=60
^C=(60-30):2=15 => ^B=60-15=30
b/ Đường trung trực của BC cắt BC tại H
+Xét hai tg vuông BHE và tg vuông CHE có
HE chung và HB=HC => tg BHE=tg CHE (Hai tam giác vuông có hai cạnh góc vuông bằng nhau
=> BE=CE (1) và ^HBE=^HCE=45 (2)
+ Xét hai tg vuông HBD và tg vuông HCD có
HD chung và HB=HC => tg HBD=tg HCD (Hai tam giác vuông có hai cạnh góc vuông bằng nhau)
=> BD=CD (3) và ^HBD=^HCD=15 (4)
Từ (2) và (4) => ^EBD=^ECD=45-15=30 (5)
c/ Xét tg BED và tg ECD
Từ (1) (3) và (5) => tg BED=tg ECD (c.g.c)
cho tam giác ABC , Góc A=120• , góc B- Góc C=30• đường trung trực của BC cắt AC tại D cắt tia đối của AB tại E
a) Tính các góc của tám giác ABC
b) Chứng minh : góc EBD = Góc ECD =30•
c) chứng minh tam giác BED= tam giác ECD
Cho tam giác ABC có góc A= 120 độ, góc B trừ góc C bằng 30 độ. Đường trung trực của BC cắt AC tại D, cắt tia đối của tia AB tại E. a) Tính số đo các góc của tam giác ABC.
b) Chứng minh góc EBD=góc ECD= góc ADB= 30 độ.
c) So sánh tam giác EDB và tam giác EDC
Cho \(\Delta ABC\) có góc A=120 độ. Góc B-C=30 độ. Trung trực của cạnh BC cắt AC ở D, cắt tia đối của tia AB ở E
a) Tính các góc của tam giác ABC
b) CMR: Góc EBD= góc ECD= góc ADB = 30 độ
c) So sánh 2 góc: EBD và EDC
a/Ta có góc A+góc B+ góc C=180o(định lí)
Mà góc A=120o
--> góc B+ góc C=180o-120o=60o
Mà góc B-góc C=30o
--> góc C=(60-30)/2=15o
--> góc B=15o+30o=45o
rat can diem
nho ban nao tich gium minh nhe
minh rat cam on
Cho tam giác ABC (AB=AC)có góc A =120 độ .Trung trực d của AC cắt BC tại D .Trên tia AD lấy điểm E sao cho AE=BD
a Tính góc ABC ,góc ACB ,góc CAD và chứng minh AD=CE
b Chứng minh tam giác DCE là tam giác đầu
c Vẽ đường trung tuyến AH của tam giác ABC .Tia AH cắt d tại I.Chứng minh IC qua trung điểm của DE
Cho tam giác ABC vuông tại A có AB = 3cm, AC = 4cm
a. Tính độ dài BC
b. So sánh các góc của tam giác ABC
c. Vẽ đường phân giác BD của tam giác ABC (D thuộc AC). Vẽ DB vuông góc với BC tại E. Chứng minh tam giác ABD = tam giác EBD
d. Trên tia đối của tia AB, lấy điểm K sao cho AK = EC
Chứng minh góc BKC bằng góc BCK
e. Tia BD cắt KC tại I. Chứng minh IA = IE.
Câu 4: Cho tam giác ABC vuông tại A(AB < AC) phân giác góc B cắt AC tại D .Kẻ DE vuông góc BC tại E. a/Chứng minh tam giác ABD = tam giác EBD b/Chứng minh BD là đường trung trực của đoạn thẳng AB. c/ Chứng minh: AB + AC > BC + DF
a: Xét ΔBAD vuông tại A và ΔBED vuông tại E có
BD chung
góc ABD=goc EBD
=>ΔBAD=ΔBED
b: ΔBAD=ΔBED
=>BA=BE; DA=DE
=>BD là trung trực của AE
Cho tam giác ABC vuông tại A. Trên cạnh BC lấy điểm E sao cho BA=BE. Tia phân giác của góc B cắt AC tại D
a) Chứng minh tam giác ABD= tam giác EBD
b) Chứng minh BD là đường trung trực của AE
c) Kẻ AH vuông góc BC ( H thuộc BC ). Chứng minh AH //DE
d) Chứng minh góc ABC=góc EDC ( gợi ý: sử dụng tính chất 2 góc nhọn phụ nhau trong 2 tam giác vuông )
e) Gọi K là giao điểm của ED và BA. M là trung điểm của KC. Chứng minh B, D, M thẳng hàng
🤒🤒ÉT O ÉTTTTTT
e) vì AC vuông góc vs BK , KE ( kéo dài ED)vuông góc với BC mà AC và KE cắt nhau tại D => D là trực tâm của tam giác KBC => BD vuoogn góc với KC ( 1 ) .M là trung điểm của KC => BM là đường cao đồng thời là đường trung trực của tam giác KBC ( 2 ) . từ ( 1 ) và ( 2 ) => B, D , M thằng hàng
Cho tam giác ABC vuông tại A có góc C bằng 30°,tia phân giác của góc B cắt AC tại D,kẻ DE vuông góc BC tại E. a) Chứng minh ∆ABD=∆EBD b)Chứng minh tam giác ABE là tam giác đều. c)Chứng minh BD=DC GIÚP MÌNH VỚI Ạ
a) Xét ∆ABD và ∆EBD ta có :
BD chung
góc BAD = góc BED ( = 90 độ)
góc ABD = góc EBD ( gt)
=> ∆ABD=∆EBD ( ch-gn)
b) Xét tam giác vuông ABC ta có :
Góc A = 90 độ, góc C = 30 độ
Mà góc A + góc C + góc B = 180 độ
=> góc B = 180 - 90 - 30 = 60 độ (1)
Xét tam giác ABE ta có :
BA = BE ( vì ∆ABD=∆EBD) => tam giác ABE cân tại B
Mà góc B = 60 độ => Tam giác ABE là tam giác đều ( trong tam giác cân, một góc = 60 độ thì tam giác đó là tam giác đều )
a) Xét `∆ABD` và `∆EBD` ta có :
`BD` chung
`hat (BAD) = hat (BED) ( = 90^o)`
`hat(ABD) = hat (EBD)`
`=> ∆ABD=∆EBD ( ch-gn)`
b) Xét tam giác vuông `ABC` ta có :
`Hat A = 90 độ, hatC = 30 độ`
Mà `hat (A) + hat (C) + hat (B) = 180^o`
`=> hat(B) = 180 - 90 - 30 = 60 độ (1)`
Xét tam giác ABE ta có :
`BA = BE ( vì ∆ABD=∆EBD) =>` ` triangle ABE `cân tại B
Mà `hat(B)= 60 độ => triangle ABC` là tam giác đều
a) Xét ∆ABD và ∆EBD ta có :
BD chung
góc BAD = góc BED ( = 90 độ)
góc ABD = góc EBD ( gt)
=> ∆ABD=∆EBD ( ch-gn)
b) Xét tam giác vuông ABC ta có :
Góc A = 90 độ, góc C = 30 độ
Mà góc A + góc C + góc B = 180 độ
=> góc B = 180 - 90 - 30 = 60 độ (1)
Xét tam giác ABE ta có :
BA = BE ( vì ∆ABD=∆EBD) => tam giác ABE cân tại B
Mà góc B = 60 độ => Tam giác ABE là tam giác đều ( trong tam giác cân, một góc = 60 độ thì tam giác đó là tam giác đều )