Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Thiện Minh
Xem chi tiết
Ngọc Băng
Xem chi tiết
Huy Tú
17 tháng 1 2019 lúc 21:47

a, Ta có: \(2\left(x^8+y^8\right)\ge\left(x^3+y^3\right)\left(x^5+y^5\right)\)

\(\Leftrightarrow x^8+y^8\ge x^5y^3+x^3y^5\)

Ta CM: \(\Leftrightarrow x^8+y^8\ge x^5y^3+x^3y^5\)

Áp dụng bđt Cô si:

\(x^8+x^8+x^8+x^8+x^8+y^8+y^8+y^8\ge8x^5y^3\) (*)

Tương tự, \(5y^3+3x^3\ge8x^3y^5\) (**)

Từ (*), (**) \(\Rightarrowđpcm\)

Nguyễn Thu Hồng
Xem chi tiết
Tuyển Trần Thị
Xem chi tiết
Nguyễn Thiều Công Thành
1 tháng 10 2017 lúc 19:39

easy

\(VT\ge\frac{8}{\left(a+b\right)^2+\left(a+b\right)^2c}+\frac{8}{\left(b+c\right)^2+\left(b+c\right)^2c}+\frac{8}{\left(c+a\right)^2+\left(c+a\right)^2b}+\frac{\left(a+b\right)^2}{4}+\frac{\left(b+c\right)^2}{4}+\frac{\left(c+a\right)^2}{4}\)

\(=\frac{8}{\left(a+b\right)^2\left(c+1\right)}+\frac{8}{\left(b+c\right)^2\left(a+1\right)}+\frac{8}{\left(c+a\right)^2\left(b+1\right)}+\frac{\left(a+b\right)^2}{4}+\frac{\left(b+c\right)^2}{4}+\frac{\left(c+a\right)^2}{4}\)

đến đây ghép rồi dùng cô si

bài này trong đề thi của tỉnh nào đó ở nước nào đó ở hành tinh nào đó năm 2016-2017

trần gia bảo
13 tháng 4 2019 lúc 22:54

bạn làm luôn khúc sau dùm mik nhé, mik ko hiểu

Kiệt Nguyễn
10 tháng 7 2020 lúc 19:43

Ta có bất đẳng thức quen thuộc sau \(4ab\le\left(a+b\right)^2\). Như vậy thì:\(\frac{8}{\left(a+b\right)^2+4abc}\ge\frac{8}{\left(a+b\right)^2+c\left(a+b\right)^2}\)\(=\frac{8}{\left(c+1\right)\left(a+b\right)^2}\)

 Lại có \(a^2+b^2\ge\frac{\left(a+b\right)^2}{2}\)nên \(\frac{8}{\left(a+b\right)^2+4abc}+\frac{a^2+b^2}{2}\)\(\ge\frac{8}{\left(c+1\right)\left(a+b\right)^2}+\frac{\left(a+b\right)^2}{4}\ge\frac{2\sqrt{2}}{\sqrt{c+1}}\)(Theo BĐT AM - GM)

Lại áp dụng BĐT AM - GM, ta được: \(\frac{2\sqrt{2}}{\sqrt{c+1}}=\frac{8}{2\sqrt{2\left(c+1\right)}}\ge\frac{8}{c+3}\)

Từ đó suy ra \(\frac{8}{\left(a+b\right)^2+4abc}+\frac{a^2+b^2}{2}\ge\frac{8}{c+3}\)(1)

Tương tự, ta có: \(\frac{8}{\left(b+c\right)^2+4abc}+\frac{b^2+c^2}{2}\ge\frac{8}{a+3}\)(2) ; \(\frac{8}{\left(c+a\right)^2+4abc}+\frac{c^2+a^2}{2}\ge\frac{8}{b+3}\)(3)

Cộng theo vế của 3 BĐT (1), (2), (3), ta được: \(\frac{8}{\left(a+b\right)^2+4abc}+\frac{8}{\left(b+c\right)^2+4abc}+\frac{8}{\left(c+a\right)^2+4abc}\)\(+a^2+b^2+c^2\ge\frac{8}{a+3}+\frac{8}{b+3}+\frac{8}{c+3}\)

Đẳng thức xảy ra khi a = b = c = 1

Khách vãng lai đã xóa
Trần Thiên Kim
Xem chi tiết
Akai Haruma
20 tháng 7 2017 lúc 23:37

Lời giải

Cách giải đơn giản nhất là khai triển

\(3(a^8+b^8+c^8)\geq (a^3+b^3+c^3)(a^5+b^5+c^5)\)

\(\Leftrightarrow 2(a^8+b^8+c^8)\geq a^5(b^3+c^3)+b^5(c^3+a^3)+c^5(a^3+b^3)\)

\(\Leftrightarrow (a^3-b^3)(a^5-b^5)+(b^3-c^3)(b^5-c^5)+(c^3-a^3)(c^5-a^5)\geq 0(\star)\)

Xét \((a^3-b^3)(a^5-b^5)=(a-b)^2(a^2+b^2)(a^4+a^3b+a^2b^2+ab^3+b^4)\geq 0\) với mọi \(a,b>0\)

và tương tự với các biểu thức còn lại.

Suy ra BĐT \((\star)\) luôn đúng.

Ta có đpcm

Đây chính là một dạng của BĐT Chebyshev:

Với dãy số thực \(a_1\leq a_2\leq ....\leq a_n\) . Nếu tồn tại dãy số thực\(b_1\leq b_2\leq .... \leq b_n\) thì \(n(a_1b_1+a_2b_2+....+a_nb_n)\geq (a_1+a_2+...+a_n)(b_1+b_2+...+b_n)\)

Akai Haruma
21 tháng 7 2017 lúc 0:13

Câu 2:

Tương tự câu 1 thôi.

Do \(a+b=2\) nên bài toán tương đương: \(2(a^8+b^8)\geq (a^7+b^7)(a+b)\)

\(\Leftrightarrow a^8+b^8\geq a^7b+ab^7\Leftrightarrow (a^7-b^7)(a-b)\geq 0\)

\(\Leftrightarrow (a-b)^2(a^6+a^5b+....+ab^5+b^6)\geq 0(\star)\)

Xét \(Q=a^6+a^5b+a^4b^2+a^3b^3+a^2b^4+ab^5+b^6\)

\(Q=(a+b)(a^5+b^5)+a^2b^2(a^2+b^2+ab)\)

Dựa vào điều kiện \(a+b=2\) và biến đổi, ta thu được \(Q=16(2-ab)^2-8ab(2-ab)-a^3b^3\)

Đặt \(ab=t\Rightarrow Q=-t^3+24t^2-80t+64\)

\(\Leftrightarrow Q=(1-t)(t-8)^2+7t^2\)

Với mọi \(a,b\in\mathbb{R}\) ta luôn có \(ab\leq \frac{(a+b)^2}{4}\Rightarrow t\leq 1\). Do đó \(Q\geq 0\)

Kéo theo BĐT \((\star)\) luôn đúng, bài toán luôn đúng. Do đó ta có đpcm.

Nguyễn Thiện Minh
Xem chi tiết
Diệu Huyền
8 tháng 2 2020 lúc 13:25

Ta biến đổi: \(4\left(a^3+b^3\right)-\left(a+b\right)^3+4\left(b^3+c^3\right)-\left(b+c\right)^3+4\left(c^3+a^3\right)-\left(c+a\right)^3\ge0\)

Xét: \(4\left(a^3+b^3\right)-\left(a+b\right)^3=\left(a+b\right)\left[4\left(a^2-ab+b^2\right)-\left(a+b\right)^2\right]\)

\(=3\left(x+b\right)\left(a-b\right)^2\ge0\)

Tương tự với: \(4\left(b^3+c^3\right)-\left(b+c\right)^3\)\(4\left(c^3+a^3\right)-\left(c+a\right)^3\)

Ta suy ra đpcm.

Đẳng thức xảy ra \(\Leftrightarrow a=b=c\)

Khách vãng lai đã xóa
๖ۣۜDũ๖ۣۜN๖ۣۜG
Xem chi tiết
Diệu Huyền
8 tháng 2 2020 lúc 13:26

Phương trình đưa được về dạng ax + b = 0

Khách vãng lai đã xóa
Lê Ng Hải Anh
Xem chi tiết
Vo Thanh Anh
29 tháng 6 2018 lúc 7:53

\(\left(a^{10}+b^{10}\right)\left(a^2+b^2\right)\ge\)\(\left(a^8+b^8\right)\left(a^4+b^4\right)\)

\(\Leftrightarrow a^{10}b^2+a^2b^{10}\ge a^8b^4+a^4b^8\)

\(\Leftrightarrow a^8+b^8\ge a^6b^2+a^2b^6\)

\(\Leftrightarrow\left(a^2-b^2\right)\left(a^6-b^6\right)\ge0\)

Vì a^2-b^2 va a^6-b^6 cùng dấu nên ta có điều phải chứng minh.

Lê Ng Hải Anh
29 tháng 6 2018 lúc 11:03

bn có thể giải rõ hơn ko?

Rio Va
Xem chi tiết