cho tam giac ABC co R, r lần lượt là bán kính đường tròn ngoại tiếp, bán kính đường tròn nội tiếp. Chứng minh 2r<=R
Cho tam giác ABC vuông tại A, vẽ đường tròn nội tiếp và đường tròn ngoại tiếp tam giác ABC lần lượt có bán kính r,R. Chứng minh AB+AC=2(r+R)
Cho tam giác ABC vuông tại A. Gọi R là bán kính của đường tròn ngoại tiếp. r là bán kính của đường tròn nội tiếp tam giác ABC. Chứng minh rằng: AB + AC = 2(R + r)
Vì tam giác ABC vuông tại A nên tâm đường tròn ngoại tiếp tam giác ABC là trung điểm của cạnh huyền BC.
Ta có: BC = 2R
Giả sử đường tròn (O) tiếp với AB tại D, AC tại E và BC tại F
Theo kết quả câu a) bài 58, ta có ADOE là hình vuông.
Suy ra: AD = AE = EO = OD = r
Theo tính chất hai tiếp tuyến cắt nhau ta có:
AD = AE
BD = BF
CE = CF
Ta có: 2R + 2r = BF + FC + AD + AE
= (BD + AD) + (AE + CE)
= AB + AC
Vậy AB = AC = 2(R + r)
Cho tam giác ABC bất kì. Gọi R và r lần lượt là bán kính đường tròn ngoại tiếp và nội tiếp tam giá ABC. Chứng minh rằng:
\(R\ge2r\) ?
Không thì dùng định lý Euler nhanh hơn. Gọi d là khoản cách giữa tâm nội tiếp và ngoại tiếp thì ta có
\(d^2=R\left(R-2r\right)\ge0\)
\(\Leftrightarrow R\ge2r\)
Ta có: \(S=\frac{abc}{4R}=\frac{\left(a+b+c\right)r}{2}\)
\(\Rightarrow\hept{\begin{cases}R=\frac{abc}{4S}\\r=\frac{2S}{a+b+c}\end{cases}}\)
Ta cần chứng minh:
\(R\ge2r\)
\(\Leftrightarrow\frac{abc}{4S}\ge\frac{4S}{a+b+c}\)
\(\Leftrightarrow abc\left(a+b+c\right)\ge16S^2\)
\(\Leftrightarrow abc\left(a+b+c\right)\ge\left(a+b+c\right)\left(a+b-c\right)\left(a+c-b\right)\left(b+c-a\right)\)
\(\Leftrightarrow abc\ge\left(a+b-c\right)\left(a+c-b\right)\left(b+c-a\right)\)
Ta có:
\(\sqrt{\left(a+b-c\right)\left(a+c-b\right)}\le\frac{a+b-c+a+c-b}{2}=a\)
Tương tự ta có điều phải chứng minh
Tới đây thì xong rồi nhé.
Cho R, r lần lượt là bán kính đường tròn ngoại tiếp, đường tròn nội tiếp của một tam giác vuông cân. Tìm tỉ số giữa R và r.
Ta có:
\(r^2+p^2+4Rr=\left(\dfrac{S}{p}\right)^2+p^2+\dfrac{abc}{S}.\dfrac{S}{p}\)
\(=\dfrac{\left(p-a\right)\left(p-b\right)\left(p-c\right)}{p}+p^2+\dfrac{abc}{p}\)
\(=\dfrac{p^3+\left(ab+bc+ac\right)p-p^2\left(a+b+c\right)-abc+p^3+abc}{p}\)
\(=ab+bc+ca\)
Do đó:
\(\dfrac{ab+bc+ca}{4R^2}=\dfrac{r^2+p^2+4Rr}{4R^2}\)
\(\Leftrightarrow sinAsinB+sinBsinC+sinCsinA=\dfrac{r^2+p^2+4Rr}{4R^2}\)\(\left(đpcm\right)\)
bạn giải thích chi tiết đoạn này hộ mình được ko ạ
p^3+(ab+bc+ac)p−p^2(a+b+c)−abc+p^3+abc/p =ab+bc+ca
Cho tam giác ABC vuông tại A. r, R lần lượt là bán kính đường tròn nội, ngoại tiếp tam giác. Cmr: AB+AC=2(r+R)
Vì tam giác ABC vuông tại A nên tâm đường tròn ngoại tiếp tam giác ABC là trung điểm của cạnh huyền BC.
Ta có: BC = 2R
Giả sử đường tròn (O) tiếp với AB tại D, AC tại E và BC tại F
Theo kết quả câu a) bài 58, ta có ADOE là hình vuông.
Suy ra: AD = AE = EO = OD = r
Theo tính chất hai tiếp tuyến cắt nhau ta có:
AD = AE
BD = BF
CE = CF
Ta có: 2R + 2r = BF + FC + AD + AE
= ( BD + AD ) + ( AE + CE )
= AB + AC
Vậy AB = AC = 2 ( R + r )
Cho tam giác ABC vuông tại A. Gọi R là bán kính của đường tròn ngoại tiếp, r là bán kính của đường tròn nội tiếp tam giác ABC. Chứng minh rằng :
\(AB+AC=2\left(R+r\right)\)
ta có : BC = 2R ; AD = AE = r
nên 2R + r = BC + (AE + AD) = (BF + FC) + (AE + AD)
= (DB + EC) + (AE + AD) = (AD + DB) + (AE + EC)
= AB + AC ( đpcm)
Cho tam giác ABC có AB = AC =2BC = a. Biết Rr =0,5 với R r lần lượt là bán kính đường tròn ngoại tiếp và nội tiếp tam giác ABC . Tính a
Cho tam giác ABC vuông tại A . Gọi r và R lần lượt là bán kính đường tròn nội tiếp và ngoại tiếp và ngoại tiếp tam giác ABC . Biết r = 5cm , R = 37 cm . Diện tích tam giác ABC là ... cm2