Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn  Mai Linh
Xem chi tiết
TAKASA
11 tháng 7 2018 lúc 18:19

Đặt A =1/2^2 .1/3^2.1/4^2. ... . 1/99^2

2A=1/2.1/2^2.1/2^3. ... . 1/98^2

2A-A= (1/2.1/2^2.1/2^3. ... . 1^98^2)-(1/2^2.1/3^2.1/4^2. ... . 1/99^2)

A=1/2-1/99^2

nhok họ lưu
Xem chi tiết
Cristiano Ronaldo
12 tháng 6 2017 lúc 7:36

 1 + ( 1 + 2 ) + ( 1 + 2 + 3 ) + ( 1 + 2 + 3 + 4 ) + ……+ ( 1 + 2 + 3 +…+ 99 ) = x

Ta thấy :  số 1 xuất hiện trong 99 tổng ,  số 2 xuất hiện trong 98 lần , số 3 xuất hiện trong 97 tổng , ... , 99 xuất hiện trong 1 tổng 

Nên tổng trên bằng ; 1 x 99 + 2 x 98 + 3 x 97 + ... + 97 x 3 + 98 x 2 + 99 x 1 = x 

                               [( 1 x99 ) +  ( 99 x1 )] + [( 2 x 98 ) + ( 98 x 2 ) ] + ... + [( 49 x 51 ) + ( 51 x 49 )] = x 

 ( Tự làm tiếp )

nhok họ lưu
12 tháng 6 2017 lúc 8:16

làm đi hộ mk mk k 5 k cho

Đào Ngọc Quỳnh Anh
Xem chi tiết
Trần Anh
5 tháng 1 2016 lúc 14:27

= 1

tick đi mink giải thích cho .  hihihihihihihihiihihiiiiiiiiiiiiiiii

A = \(\dfrac{1}{1+2}\) + \(\dfrac{1}{1+2+3}\) + ... + \(\dfrac{1}{1+2+3+...+99}\) + \(\dfrac{1}{50}\)

A = \(\dfrac{1}{\left(2+1\right).2:2}\) + \(\dfrac{1}{\left(3+1\right).3:2}\) + ... + \(\dfrac{1}{\left(99+1\right).99:2}\) + \(\dfrac{1}{50}\)

A = \(\dfrac{2}{2.3}\) + \(\dfrac{2}{3.4}\) + \(\dfrac{2}{4.5}\) + ... + \(\dfrac{2}{99.100}\) + \(\dfrac{1}{50}\)

A = 2.(\(\dfrac{1}{2.3}\) + \(\dfrac{1}{3.4}\) + \(\dfrac{1}{4.5}\) + ... + \(\dfrac{1}{99.100}\)) + \(\dfrac{1}{50}\)

A = 2.(\(\dfrac{1}{2}\) - \(\dfrac{1}{3}\) + \(\dfrac{1}{3}\) - \(\dfrac{1}{4}\)  + \(\dfrac{1}{4}-\dfrac{1}{5}\)\(\dfrac{1}{5}\) - \(\dfrac{1}{6}\) + ... + \(\dfrac{1}{99}\) - \(\dfrac{1}{100}\)) + \(\dfrac{1}{50}\)

A = 2.(\(\dfrac{1}{2}\) - \(\dfrac{1}{100}\)) + \(\dfrac{1}{50}\)

A = 2.(\(\dfrac{50}{100}\) - \(\dfrac{1}{100}\)) + \(\dfrac{1}{50}\)

A = 2.\(\dfrac{49}{100}\) + \(\dfrac{1}{50}\)

A = \(\dfrac{49}{50}\) + \(\dfrac{1}{50}\)

A = 1

Triệu Khánh Phương
Xem chi tiết
Ngọc Bích Huệ
12 tháng 10 2021 lúc 19:50

bai  nay to biet la so 88

Khách vãng lai đã xóa
Vũ Đức Hưng
Xem chi tiết
Sắc màu
28 tháng 8 2018 lúc 19:48

C =\(\frac{1}{100}-\frac{1}{100.99}-...\)\(-\frac{1}{3.2}-\frac{1}{2.1}\)

C = \(\frac{1}{100}-\frac{1}{100}+\frac{1}{99}-\frac{1}{99}+...\)\(+\frac{1}{3}-\frac{1}{3}+\frac{1}{2}-\frac{1}{2}+1\)

C = 1

Thắng Nguyễn
Xem chi tiết
Y
28 tháng 3 2019 lúc 22:39

\(3B=1-\frac{2}{3}+\frac{3}{3^2}-\frac{4}{3^3}+...+\frac{99}{3^{98}}-\frac{100}{3^{99}}\)

\(B=\frac{1}{3}-\frac{2}{3^2}+\frac{3}{3^3}-\frac{4}{3^4}+...+\frac{99}{3^{99}}-\frac{100}{3^{100}}\)

\(\Rightarrow4B=3B+B=1-\frac{1}{3}+\frac{1}{3^2}-\frac{1}{3^3}+...+\frac{1}{3^{98}}-\frac{1}{3^{99}}-\frac{100}{3^{100}}\)

+ Đặt \(M=1-\frac{1}{3}+\frac{1}{3^2}-\frac{1}{3^3}+...+\frac{1}{3^{98}}-\frac{1}{3^{99}}\)

\(3M=3-1+\frac{1}{3}-\frac{1}{3^2}+...+\frac{1}{3^{97}}-\frac{1}{3^{98}}\)

\(\Rightarrow4M=3M+M=3-\frac{1}{3^{99}}\)

\(\Rightarrow M=\frac{3}{4}-\frac{1}{3^{99}\cdot4}\)

\(\Rightarrow4B=M-\frac{100}{3^{100}}=\frac{3}{4}-\frac{1}{3^{99}\cdot4}-\frac{100}{3^{100}}\)

\(\Rightarrow B=\frac{3}{16}-\frac{1}{3^{99}\cdot16}-\frac{100}{3^{100}\cdot4}\) \(\Rightarrow B< \frac{3}{16}\)

Y
28 tháng 3 2019 lúc 22:14

a) \(2A=1-\frac{1}{2}+\frac{1}{2^2}-\frac{1}{2^3}+\frac{1}{2^4}-\frac{1}{2^5}\)

\(A=\frac{1}{2}-\frac{1}{2^2}+\frac{1}{2^3}-\frac{1}{2^4}+\frac{1}{2^5}-\frac{1}{2^6}\)

\(\Rightarrow3A=2A+A=1-\frac{1}{2^6}\)

\(\Rightarrow A=\frac{1}{3}-\frac{1}{2^6\cdot3}< \frac{1}{3}\) ( đpcm )

triệu khánh phương
Xem chi tiết
Nguyễn Lê Phước Thịnh
28 tháng 3 2021 lúc 21:37

Ta có: \(\dfrac{101+100+99+...+3+2+1}{101-100+99-98+...+3-2+1}\)

\(=\dfrac{101+\left(100+1\right)\cdot50}{101-\left[100-99+98-97+...+2-1\right]}\)

\(=\dfrac{101\cdot51}{101-1\cdot50}\)

\(=\dfrac{101\cdot51}{101-50}=101\)

triệu khánh phương
28 tháng 3 2021 lúc 21:41

c.mơn bn nhá. ~THANK YOU~

Diệu Thảo
Xem chi tiết
Lê Anh Duy
12 tháng 3 2019 lúc 13:38

\(\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+\frac{1}{4\cdot5}+...+\frac{1}{99\cdot100}=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{99}-\frac{1}{100}=\frac{1}{2}-\frac{1}{100}< \frac{1}{2}\)

Nguyễn Phan Thái An
Xem chi tiết
Đinh Thùy Linh
29 tháng 6 2016 lúc 10:41

\(=\frac{2-1}{\sqrt{2}+1}+\frac{3-2}{\sqrt{3}+\sqrt{2}}+\frac{4-3}{\sqrt{4}+\sqrt{3}}+...+\frac{100-99}{\sqrt{100}+\sqrt{99}}.\)

\(=\frac{\left(\sqrt{2}+1\right)\left(\sqrt{2}-1\right)}{\sqrt{2}+1}+\frac{\left(\sqrt{3}+\sqrt{2}\right)\left(\sqrt{3}-\sqrt{2}\right)}{\sqrt{3}+\sqrt{2}}+\frac{\left(\sqrt{4}+\sqrt{3}\right)\left(\sqrt{4}-\sqrt{3}\right)}{\sqrt{4}+\sqrt{3}}+...\)

\(=\sqrt{2}-1+\sqrt{3}-\sqrt{2}+\sqrt{4}-\sqrt{3}+...+\sqrt{100}-\sqrt{99}\)

\(=\sqrt{100}-1=10-1=9.\)