Cho tỉ lệ thức a/b=c/d. Chứng tỏ b khác (-d) thì (a+c)/(b+d)=a/b
cho tỉ lệ thức a/b=c/d
chứng tỏ rằng nếu b khác - d thì a+c/b+c=a/b
nếu b khác d thì a-c/b-c=a/b
Cho tỉ lệ thức \(\frac{a}{b}=\frac{c}{d}\), b; c khác 0. Chứng tỏ rằng a khác b, c khác d thì ta có các tỉ lệ thức sau:
\(\frac{a}{a+b}=\frac{c}{c+d};\frac{a}{a-b}=\frac{c}{c-d};\frac{a+b}{a-b}=\frac{c+d}{c-d}\)
nhớ là cm từng tỉ lệ thức nha
Chứng minh từ tỉ lệ thức a/b=c/d thì ta suy ra được các tỉ lệ thức sau:
a+b/b=c+d/d; a-b/b=c-d/d và a/a+b=c/c+d (với a+b khác 0, c+d khác 0
\(\frac{a+b}{b}=1\frac{a}{b}\)
\(\frac{c+d}{d}=1\frac{c}{d}\)
Vì \(\frac{c}{d}=\frac{a}{b}\)nên\(1\frac{c}{d}=1\frac{a}{b}\Rightarrow\frac{a+b}{b}=\frac{c+d}{d}\)
\(\RightarrowĐPCM\)
\({a \over b}={c \over d} => ad=bc \)
\({a+b \over b}={c+d \over d} \) chỉ khi (a+b)d = (c+d)b <=> ad+bd=bc+bd mà ad=bc => ad+bd=bc+bd => \({a+b \over b}={c+d \over d}\)
mấy câu sau làm tương tự chủ yếu là nhân chéo
Cho tỉ lệ thức \(\frac{a}{b}\)=\(\frac{c}{d}\). Chứng tỏ rằng nếu b khác -d thì \(\frac{a+c}{b+d}\)=\(\frac{a}{b}\).
Nếu b khác d thì \(\frac{a-c}{b-d}\)=\(\frac{a}{b}\).
Cho tỉ lệ thức a/b=c/d. Chứng tỏ ta có tỉ lệ thức (a+c)²/(b+d)²
Ta có: \(\frac{a}{b}=\frac{c}{d}.\)
Áp dụng tính chất dãy tỉ số bằng nhau ta được:
\(\frac{a}{b}=\frac{c}{d}=\frac{a+c}{b+d}\)
\(\Rightarrow\frac{a}{b}.\frac{c}{d}=\frac{a+c}{b+d}.\frac{a+c}{b+d}=\left(\frac{a+c}{b+d}\right)^2\)
\(\Rightarrow\frac{ac}{bd}=\frac{\left(a+c\right)^2}{\left(b+d\right)^2}\left(đpcm\right).\)
Chúc bạn học tốt!
Đặt \(\frac{a}{b}=\frac{c}{d}=k\Rightarrow a=bk;c=dk\)
Ta có:
\(\frac{ac}{bd}=\frac{bk.dk}{bd}=k^2\) (*)
Lại có:
\(\frac{\left(a+c\right)^2}{\left(b+d\right)^2}=\frac{\left(bk+dk\right)^2}{\left(b+d\right)^2}=\frac{k^2\left(b+d\right)^2}{\left(b+d\right)^2}=k^2\) (**)
Từ (*) và (**) \(\Rightarrow\frac{ac}{bd}=\frac{\left(a+c\right)^2}{\left(b+d\right)^2}\)
Bài 1
a) Cho ba số a, b, c dương . Chứng tỏ rằng M = a/a+b + b/b+c + c/a+c không là số nguyên
b) Cho tỉ lệ thức a/b =c/d ( b,d khác 0 ; a khác -c ; b khác -d ) . Chứng minh: (a+b/c+d)^2 = a^2+b^2/c^2+d^2
c) Cho 1/c = 1/2(1/a+1/b) (Với a, b, c khác 0; b khác c). Chứng minh rằng: a/b=a-c/c-b
chứng minh rằng tỉ lệ thức a/b=c/d(a;b;c;d khác 0; d khác 0; a khác b; c khác d)ta suy ra được tỉ lệ thức
a, a/a-b=c/c-d
b, a+b/b=c+d/d
Cho tỉ lệ thức \(\frac{a}{b}=\frac{c}{d},b\ne0,d\ne0\)chứng tỏ ằng nếu \(a\ne+-b,c\ne+-d\)thì ta có các tỉ lệ thức :\(\frac{a}{a+b}=\frac{c}{c+d},\frac{a}{a-b}=\frac{c}{c-d},\frac{a+b}{a-b}=\frac{c+d}{c-d}\)
Ta có: \(\frac{a}{b}=\frac{c}{d}\)
\(\Leftrightarrow\frac{b}{a}=\frac{d}{c}\Leftrightarrow\frac{b}{a}+1=\frac{d}{c}+1\Leftrightarrow\frac{a+b}{a}=\frac{c+d}{c}\) (1)
\(\Rightarrow\frac{a}{a+b}=\frac{c}{c+d}\)
\(\frac{a}{b}=\frac{c}{d}\Leftrightarrow\frac{b}{a}=\frac{d}{c}\Leftrightarrow1-\frac{b}{a}=1-\frac{d}{c}\)
\(\Leftrightarrow\frac{a-b}{a}=\frac{c-d}{c}\Leftrightarrow\frac{a}{a-b}=\frac{c}{c-d}\) (2)
Nhân vế (1) và (2) lại ta được:
\(\frac{a+b}{a}\cdot\frac{a}{a-b}=\frac{c+d}{c}\cdot\frac{c}{c-d}\Rightarrow\frac{a+b}{a-b}=\frac{c+d}{c-d}\)
Cho bốn số hữu tỉ khác nhau a,b,c,d thỏa mãn hệ thức ad=cb.
Chứng tỏ rằng từ hệ thức trên ta có các tỉ lệ thức sau:
a) \(\frac{a+b}{b}=\frac{c+d}{d}\)
b) \(\frac{a-b}{b}=\frac{c-d}{d}\)
a) Cách 1: Từ điều kiện \(a,b,c,d\) khác nhau và \(a.d=b.c\)
ta suy ra \(a,b,c,d\ne0\) và \(\frac{a}{b}=\frac{c}{d}\left(1\right)\).
Cộng vào hai vế của (1) cùng số 1 ta được:
\(\frac{a}{b}+1=\frac{c}{d}+1\Rightarrow\frac{a+b}{b}=\frac{c+d}{d}.\)
Cách 2: Theo tính chất của tỉ lệ thức, từ (1) suy ra:
\(\frac{a}{c}=\frac{b}{d}=\frac{a+b}{c+d}\Rightarrow\frac{c+d}{d}=\frac{a+b}{b}.\)
b) Giải tương tự câu a) ta có:
\(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{b}-1=\frac{c}{d}-1=\frac{a-b}{c}=\frac{c-d}{d}.\)
Hoặc ta có theo tính chất của tỉ lệ thức
\(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{c}=\frac{b}{d}=\frac{a-b}{c-d}\)
\(\Rightarrow\frac{a-b}{b}=\frac{c-d}{d}.\)
theo bài ra , ta có :
ad = cd
=>\(\frac{a}{b}=\frac{c}{d}\) ( 1 )
=> \(\frac{a}{b}+1=\frac{c}{d}+1\)
=>\(\frac{a+b}{b}=\frac{c+d}{d}\) (đpcm)
b/ Từ 1 ở phần a ta có:
\(\frac{a}{b}-1=\frac{c}{d}-1\)
=> \(\frac{a-b}{b}=\frac{c-d}{d}\) (đpcm)
Ta có :
ad = bc
=> a / b = c / d
a)
\(\frac{a}{b}=\frac{c}{d}\)
=> \(\frac{a}{b}+1=\frac{c}{d}+1\)
=> \(\frac{a+b}{b}=\frac{c+d}{d}\)
b)
\(\frac{a}{b}=\frac{c}{d}\)
=> \(\frac{a}{b}-1=\frac{c}{d}-1\)
=> \(\frac{a-b}{b}=\frac{c-d}{d}\)