Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Haibara Ai
Xem chi tiết
Tran thi anh
Xem chi tiết
Lê Hoàng Tài
Xem chi tiết
Trần Minh Hoàng
4 tháng 10 2017 lúc 19:32

\(\frac{a+b}{b}=1\frac{a}{b}\)

\(\frac{c+d}{d}=1\frac{c}{d}\)

Vì \(\frac{c}{d}=\frac{a}{b}\)nên\(1\frac{c}{d}=1\frac{a}{b}\Rightarrow\frac{a+b}{b}=\frac{c+d}{d}\)

\(\RightarrowĐPCM\) 

Nguyễn Anh Thắng
4 tháng 10 2017 lúc 19:46

\({a \over b}={c \over d} => ad=bc \)

\({a+b \over b}={c+d \over d} \)  chỉ khi (a+b)d = (c+d)b <=> ad+bd=bc+bd mà ad=bc => ad+bd=bc+bd => \({a+b \over b}={c+d \over d}\)

mấy câu sau làm tương tự chủ yếu là nhân chéo

nguyennhuhoa
Xem chi tiết
Han Sara
Xem chi tiết
Diệu Huyền
25 tháng 9 2019 lúc 18:15

Tham khảo:

undefined

Vũ Minh Tuấn
25 tháng 9 2019 lúc 18:25

Ta có: \(\frac{a}{b}=\frac{c}{d}.\)

Áp dụng tính chất dãy tỉ số bằng nhau ta được:

\(\frac{a}{b}=\frac{c}{d}=\frac{a+c}{b+d}\)

\(\Rightarrow\frac{a}{b}.\frac{c}{d}=\frac{a+c}{b+d}.\frac{a+c}{b+d}=\left(\frac{a+c}{b+d}\right)^2\)

\(\Rightarrow\frac{ac}{bd}=\frac{\left(a+c\right)^2}{\left(b+d\right)^2}\left(đpcm\right).\)

Chúc bạn học tốt!

Sáng
25 tháng 9 2019 lúc 18:56

Đặt \(\frac{a}{b}=\frac{c}{d}=k\Rightarrow a=bk;c=dk\)

Ta có:

\(\frac{ac}{bd}=\frac{bk.dk}{bd}=k^2\) (*)

Lại có:

\(\frac{\left(a+c\right)^2}{\left(b+d\right)^2}=\frac{\left(bk+dk\right)^2}{\left(b+d\right)^2}=\frac{k^2\left(b+d\right)^2}{\left(b+d\right)^2}=k^2\) (**)

Từ (*) và (**) \(\Rightarrow\frac{ac}{bd}=\frac{\left(a+c\right)^2}{\left(b+d\right)^2}\)

Lê Anh Dũng
Xem chi tiết
Hồ My
Xem chi tiết
My Ha
Xem chi tiết
Nguyễn Minh Đăng
10 tháng 10 2020 lúc 21:07

Ta có: \(\frac{a}{b}=\frac{c}{d}\)

\(\Leftrightarrow\frac{b}{a}=\frac{d}{c}\Leftrightarrow\frac{b}{a}+1=\frac{d}{c}+1\Leftrightarrow\frac{a+b}{a}=\frac{c+d}{c}\) (1)

\(\Rightarrow\frac{a}{a+b}=\frac{c}{c+d}\)

\(\frac{a}{b}=\frac{c}{d}\Leftrightarrow\frac{b}{a}=\frac{d}{c}\Leftrightarrow1-\frac{b}{a}=1-\frac{d}{c}\)

\(\Leftrightarrow\frac{a-b}{a}=\frac{c-d}{c}\Leftrightarrow\frac{a}{a-b}=\frac{c}{c-d}\) (2)

Nhân vế (1) và (2) lại ta được:

\(\frac{a+b}{a}\cdot\frac{a}{a-b}=\frac{c+d}{c}\cdot\frac{c}{c-d}\Rightarrow\frac{a+b}{a-b}=\frac{c+d}{c-d}\)

Khách vãng lai đã xóa
tèn tén ten
Xem chi tiết
Nguyễn Anh Duy
4 tháng 11 2016 lúc 17:01

a) Cách 1: Từ điều kiện \(a,b,c,d\) khác nhau và \(a.d=b.c\)

ta suy ra \(a,b,c,d\ne0\)\(\frac{a}{b}=\frac{c}{d}\left(1\right)\).

Cộng vào hai vế của (1) cùng số 1 ta được:

\(\frac{a}{b}+1=\frac{c}{d}+1\Rightarrow\frac{a+b}{b}=\frac{c+d}{d}.\)

Cách 2: Theo tính chất của tỉ lệ thức, từ (1) suy ra:

\(\frac{a}{c}=\frac{b}{d}=\frac{a+b}{c+d}\Rightarrow\frac{c+d}{d}=\frac{a+b}{b}.\)

b) Giải tương tự câu a) ta có:

\(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{b}-1=\frac{c}{d}-1=\frac{a-b}{c}=\frac{c-d}{d}.\)

Hoặc ta có theo tính chất của tỉ lệ thức

\(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{c}=\frac{b}{d}=\frac{a-b}{c-d}\)

\(\Rightarrow\frac{a-b}{b}=\frac{c-d}{d}.\)

Trang
4 tháng 11 2016 lúc 16:51

theo bài ra , ta có :

ad = cd

=>\(\frac{a}{b}=\frac{c}{d}\) ( 1 )

=> \(\frac{a}{b}+1=\frac{c}{d}+1\)

=>\(\frac{a+b}{b}=\frac{c+d}{d}\) (đpcm)

b/ Từ 1 ở phần a ta có:

\(\frac{a}{b}-1=\frac{c}{d}-1\)

=> \(\frac{a-b}{b}=\frac{c-d}{d}\) (đpcm)

Isolde Moria
4 tháng 11 2016 lúc 16:51

Ta có :

ad = bc

=> a / b = c / d

a)

\(\frac{a}{b}=\frac{c}{d}\)

=> \(\frac{a}{b}+1=\frac{c}{d}+1\)

=> \(\frac{a+b}{b}=\frac{c+d}{d}\)

b)

\(\frac{a}{b}=\frac{c}{d}\)

=> \(\frac{a}{b}-1=\frac{c}{d}-1\)

=> \(\frac{a-b}{b}=\frac{c-d}{d}\)