tìm nghiệm nguyên của pt: \(\left(x+y\right)^2=\left(x-1\right)\left(y-1\right)\)
Tìm nghiệm nguyên của pt:
\(x^2\left(y-1\right)+y^2\left(x-1\right)=1\)
Tìm nghiệm nguyên của pt: \(x^2y^2\left(x+y\right)+x=2+y\left(x-1\right)\)
\(PT\Leftrightarrow xy\left(x+y-1\right)+\left(x+y-1\right)=1\)
\(\Leftrightarrow\left(x+y-1\right)\left(xy+1\right)=1\)
\(\Leftrightarrow\hept{\begin{cases}x+y-1=1\\xy+1=1\end{cases}hoac\hept{\begin{cases}x+y-1=-1\\xy+1=-1\end{cases}}}\)
\(\Leftrightarrow\hept{\begin{cases}x+y=2\\xy=0\end{cases}hoac\hept{\begin{cases}x+y=0\\xy=-2\end{cases}}}\)
Đến đây thì đơn giản rồi nhé :)))
Phương trình tương đương: \(\left(x+y\right)\left(x^2y^2+1\right)=xy+2\)
\(\Leftrightarrow x+y=\frac{xu+2}{x^2y^2+1}\)
\(\Rightarrow\left(xy+2\right)⋮\left(x^2y^2+1\right)\Rightarrow\left(x^2y^2-4\right)⋮\left(x^2y^2+1\right)\)
\(\Rightarrow\left(x^2y^2+1-5\right)⋮\left(x^2y^2+1\right)\Rightarrow5⋮\left(x^2y^2+1\right)\)
\(\Rightarrow x^2y^2+1\in\left\{1;5\right\}\Rightarrow x^2y^2\in\left\{0;4\right\}\Rightarrow xy\in\left\{-2;0;2\right\}\)
\(xy=0\Rightarrow xy=2\Rightarrow\left(x;y\right)\in\left\{\left(0;2\right);\left(2;0\right)\right\}\)\(xy-2\Rightarrow x+y=0\Rightarrow y=-x\Rightarrow x^2=2\left(ktm\right)\)\(xy=2\Rightarrow x+y=\frac{4}{5}\left(ktm\right)\)Vậy: \(\left(x,y\right)\in\left\{\left(0;2\right);\left(2;0\right)\right\}\)
1.Tìm tất cả các giá trị của tham số m để pt : \(\left(x^2+\dfrac{1}{x^2}\right)-2m\left(x+\dfrac{1}{x}\right)+1+2m=0\) có nghiệm
2. Giai hệ \(\left\{{}\begin{matrix}2\left|x\right|+\left|y\right|=1\\\left|x\right|-\left|y\right|=2\end{matrix}\right.\)
Help me
1.
\(\Leftrightarrow\left(x+\dfrac{1}{x}\right)^2-2m\left(x+\dfrac{1}{x}\right)-1+2m=0\)
Đặt \(x+\dfrac{1}{x}=t\Rightarrow\left|t\right|\ge2\)
\(\Rightarrow t^2-1-2mt+2m=0\)
\(\Leftrightarrow\left(t-1\right)\left(t+1\right)-2m\left(t-1\right)=0\)
\(\Leftrightarrow\left(t-1\right)\left(t+1-2m\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}t=1\left(loại\right)\\t=2m-1\end{matrix}\right.\)
Pt có nghiệm \(\Leftrightarrow\left[{}\begin{matrix}2m-1\ge2\\2m-1\le-2\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}m\ge\dfrac{3}{2}\\m\le-\dfrac{1}{2}\end{matrix}\right.\)
2.
Cộng vế với vế: \(3\left|x\right|=3\Rightarrow\left|x\right|=1\)
\(\Rightarrow\left|y\right|=-1< 0\) (không thỏa mãn)
Vậy hệ pt vô nghiệm
Tìm nghiệm nguyên \(\left(x;y\right)\) của phương trình \(x^2=y\left(y+1\right)\left(y+2\right)\left(y+3\right)\)
Ta có \(VP=y\left(y+3\right)\left(y+1\right)\left(y+2\right)\)
\(VP=\left(y^2+3y\right)\left(y^2+3y+2\right)\)
\(VP=\left(y^2+3y+1\right)^2-1\)
\(VP=t^2-1\) (với \(t=y^2+3y+1\ge0\))
pt đã cho trở thành:
\(x^2=t^2-1\)
\(\Leftrightarrow t^2-x^2=1\)
\(\Leftrightarrow\left(t-x\right)\left(t+x\right)=1\)
Ta xét các TH:
\(t-x\) | 1 | -1 |
\(t+x\) | 1 | -1 |
\(t\) | 1 | -1 |
\(x\) | 0 |
0 |
Xét TH \(\left(t,x\right)=\left(1,0\right)\) thì \(y^2+3y+1=1\) \(\Leftrightarrow\left[{}\begin{matrix}y=0\\y=-3\end{matrix}\right.\) (thử lại thỏa)
Xét TH \(\left(t,x\right)=\left(-1;0\right)\) thì \(y^2+3y+1=-1\Leftrightarrow\left[{}\begin{matrix}y=-1\\y=-2\end{matrix}\right.\) (thử lại thỏa).
Vậy các bộ số nguyên (x; y) thỏa mãn bài toán là \(\left(0;y\right)\) với \(y\in\left\{-1;-2;-3;-4\right\}\)
Tìm nghiệm nguyên của pt :
\(\left(x^2+y^2\right)=4xy+1\)
\(2\left(x+y\right)+xy=x^2+y^2\)
Tìm nghiệm nguyên của phương trình
a)\(x\left(x+1\right)\left(x+7\right)\left(x+8\right)=y^2\)
b)\(y\left(y+1\right)\left(y+2\right)\left(y+3\right)=x^2\)
Giải pt nghiệm nguyên\(x^2+\left(x+1\right)^2=y^4+\left(y+1\right)^4\)
khai triển và rút gọn 2 vế ta được x(x+1)=y4+2y3+3y2+2y
<=> x(x+1)=y2(y+1)2+2y(y+1)
<=> x2+x+1=(y2+y+1)2 (1)
nếu x>0 thì từ x2<x2+x+1<(x+1)2 => (1) không có nghiệm nguyên x>0
nếu x=0 hoặc x=-1 thì từ (1) => y2+y+1 = \(\pm\)1 \(\Leftrightarrow\hept{\begin{cases}y=0\\y=-1\end{cases}}\)
ta có nghiệm (x;y)=(0;0);(0;-1);(-1;0);(-1;-1)
nếu x<-1 thì từ (x+1)2<x2+x+1<x2
=> (1) không có nghiệm nguyên x<-1
tóm lại phương trình đã cho có 4 nghiệm nguyên (x;y)=(0;0);(0;-1);(-1;0);(-1;-1)
Giải PT nghiệm nguyên \(\left(x-y\right)\left(2x+y+1\right)+9\left(y-1\right)=13\)
Tìn nghiệm nguyên x,y của pt: \(\left(x^2+y\right)\left(x+y^2\right)=\left(x-y\right)^2\)