Cho n điểm A1; A2; . . . ; An theo thứ tự trên đường thẳng xy và điểm M nằm ngoài đường thẳng xy. Nối M với n điểm đó ta đếm được 55 tam giác. Vậy giá trị của n là:
A. 10 B. 11 C. 12 D. 15
cho đường thẳng xy và điểm o không thuộc đường thẳng xy.Lấy n điểm A1,A2,A3 ....,An thuộc đường thẳng xy vẽ các tia góc o lần lượt đi qua các điểm A1,A2,A3,.....,Antính n
help!!!!!!!!!
5+949+555+666+999+888+777=?
555+888+654+978+12321+=?
546+456+565+5+94+6+5++5+6+5++55+56+5+54+4+5+5+5++9+9+96+56+5+5+6+6+65+6+6+6+6+6+5+56++5+5+5+5+5+6+66+6+6+6+6+6+6+6+6+6+6+6+6+6+6+6+6+6+6+5+56+59+9+99+9+9+9+9+6+3+3+3+3+3+3+3+2+2+2+2++1+1+1+1+1+1+897=?
28+5465+9595+459+495+5++65+5+6+459+6+5+594+8595+4+895+945+945+58+4795+85+89+96+95+62+2+626+526+52+65+5+85=?
Bổ sung giả thiết là \(n\) điểm đó nằm trên \(xy\)
Số các tia có gốc O là \(n\).
Ta nhận thấy số các tia có gốc là các điểm \(A_i\left(1\le i\le n\right)\) chính là \(A^2_n=\dfrac{n!}{\left(n-2\right)!}=n\left(n-1\right)=n^2-n\)
Từ đề bài, ta suy ra \(n^2-n+n=40\Leftrightarrow n^2=40\), vô lí.
(Mình nghĩ đề bài là 49 tia thì khi đó \(n=7\))
em ko biết cô hỏi xà lơ rách việc tự đi mà giải
cho đường thẳng xy và điểm o không thuộc đường thẳng xy.Lấy n điểm A1,A2,A3 ....,An thuộc đường thẳng xy vẽ các tia góc o lần lượt đi qua các điểm A1,A2,A3,.....,An<trên hình có 40tia>tính n
có ai online ko nhề?
Cho đa giác đều A1A2…A2n nội tiếp trong đường tròn tâm O. Biết rằng số tam giác có đỉnh là 3 trong 2n điểm A1;A2;…;A2n gấp 20 lần so với số hình chữ nhật có đỉnh là 4 trong 2n điểm A1;A2;…;A2n . Tìm n?
A. 3
B. 6
C.8
D.12
Số tam giác có các đỉnh là 3 trong 2n điểm A1;A2;…;A2n là:
Ta thấy ứng với hai đường chéo đi qua tâm O của đa giác A1A2…A2n cho tương ứng một hình chữ nhật có 4 đỉnh là 4 điểm trong 2n điểm A1;A2;…;A2n và ngược lại mỗi hình chữ nhật như vậy sẽ cho tương ứng hai đường chéo đi qua tâm O của đa giác.
Mà số đường chéo đi qua tâm của đa giác là n nên số hình chữ nhật có đỉnh là 4 trong 2n điểm bằng
Theo giả thiết:
⇒n=8.
Chọn C
cho N và dãy số a1,an bất kì , và điểm k tuỳ ý. Cho biết có bao nhiêu số bằng k
#include <bits/stdc++.h>;
using namespace std;
int a[100],n,i,k,dem;
{
cout<<"Nhap n="; cin>>n;
for (i=1; i<=n; i++);
{
cout<<"A["<<i<<"]="; cin>>a[i];
}
cout<<"Nhap k="; cin>>k;
dem=0;
for (i=1; i<=n; i++);
if (a[i]==k) dem=dem+1;
cout<<dem;
return 0;
}
Cho N điểm phân biệt A1,A2,A3,....An. Trong đó không có 3 điểm bất kì nào thẳng hàng. Hỏi qua 2 điểm trong N điểm trên vẽ được bao nhiêu đường thẳng phân biệt
Ta thấy: Trong n điểm phân biệt cho trước, cứ qua 1 điểm ta vẽ được n - 1 đường thẳng. Vậy qua n điểm ta vẽ được n(n - 1) đoạn thẳng.
Nhưng nếu tính vậy thì mỗi đường thẳng sẽ bị tính đi tính lại 2 lần
Vậy số đoạn thẳng phân biệt được tạo ra từ n điểm phân biệt trên là: \(\frac{n\left(n-1\right)}{2}\)(đường thẳng)
Cho N điểm phân biệt A1,A2,A3,....An. Trong đó không có 3 điểm bất kì nào thẳng hàng. Hỏi qua 2 điểm trong N điểm trên vẽ được bao nhiêu đường thẳng phân biệt
a) Cho n điểm phân biệt trong đó không có 3 điểm nào thẳng hàng. Qua 2 điểm ta vẽ
được một đường thẳng. Có tất cả 28 đường thẳng. Tìm n?
b) Cho n điểm phân biệt trong đó có 7 điểm thẳng hàng. Kẻ các đường thẳng đi qua các cặp
điểm. Có tất cả 190 đường thẳng. Tìm n?
c) Cho 20 đường thẳng đôi một cắt nhau và không có ba đường thẳng nào đồng quy. Hỏi có
bao nhiêu giao điểm tạo thành?
Cho N là điểm A1,A2,..An theo thứ tự trên đường thẳng xy và điểm M nằm giữa ngoài đường thẳng xy . Nối M với N ta được điểm đo . Số tam giác dếm được là : n. (n-1)