Rút gọn \(\frac{x+2}{4x+24}.\frac{x^2-36}{x^2+x-2}\)
Bài 1: Rút gọn biểu thức:
a) A = \(\left(\frac{1}{x^2-4x}+\frac{2}{16-x^2}+\frac{4}{4x+16}\right):\frac{1}{4x}\)
\(A=\left(\dfrac{1}{x^2-4x}+\dfrac{2}{16-x^2}+\dfrac{4}{4x+16}\right):\dfrac{1}{4x}\left(x\ne4;x\ne-4;x\ne0\right).\)
\(A=\left(\dfrac{1}{x\left(x-4\right)}+\dfrac{-2}{\left(x+4\right)\left(x-4\right)}+\dfrac{1}{x+4}\right).4x\).
\(A=\dfrac{x+4-2x+x^2-4x}{x\left(x-4\right)\left(x+4\right)}.4x.\)
\(A=\dfrac{x^2-5x+4}{\left(x-4\right)\left(x+4\right)}.4.\)
\(A=\dfrac{\left(x-4\right)\left(x-1\right)}{\left(x-4\right)\left(x+4\right)}.4.\)
\(A=\dfrac{4\left(x-1\right)}{x+4}.\)
cho \(A=\left(\frac{4x}{x+2}-\frac{x^3-8}{x^3+8}.\frac{4x^2-8x+16}{x-4}\right):\frac{16}{x+2}.\frac{x^2+3x+2}{x^2+x+1}\)
rút gọn A
Rút gọn : \(\left(\frac{x-y}{2y-x}-\frac{x^2+y^2+y-2}{x^2-xy-2y^2}\right):\frac{4x^4+4x^2y+y^2-4}{x^2+xy+x+y}:\frac{x+y}{2x^2+y+2}\)
\(=\left(\dfrac{x-y}{2y-x}-\dfrac{x^2+y^2+y-2}{x^2-2xy+xy-2y^2}\right):\dfrac{\left(2x^2+y\right)^2-4}{x\left(x+y\right)+\left(x+y\right)}:\dfrac{x+y}{2x^2+y+2}\)
\(=\left(\dfrac{x-y}{2y-x}-\dfrac{x^2+y^2+y-2}{\left(x-2y\right)\left(x+y\right)}\right)\cdot\dfrac{\left(x+y\right)\left(x+1\right)}{\left(2x^2+y+2\right)\left(2x^2+y-2\right)}\cdot\dfrac{2x^2+y+2}{x+y}\)
\(=\dfrac{y^2-x^2-x^2-y^2-y+2}{\left(x-2y\right)\left(x+y\right)}\cdot\dfrac{x+1}{2x^2+y-2}\)
\(=\dfrac{-\left(2x^2+y-2\right)}{\left(x-2y\right)\left(x+y\right)}\cdot\dfrac{x+1}{2x^2+y-2}=\dfrac{-\left(x+1\right)}{\left(x-2y\right)\left(x+y\right)}\)
Rút gọn biểu thức \(A=\frac{4x}{x^2+2x}+\frac{3}{2-x}+\frac{12x}{x^3-4x}\)
\(A=\frac{4x}{x^2-2x}+\frac{3}{2-x}+\frac{12x}{x^3-4x}\)
\(A=\frac{4x}{x\left(x-2\right)}-\frac{3}{x-2}+\frac{12x}{x\left(x-2\right)\left(x+2\right)}\)
\(A=\frac{4x\left(x+2\right)-3x\left(x+2\right)+12x}{x\left(x-2\right)\left(x+2\right)}\)
\(A=\frac{x\left(x+2\right)+12x}{x\left(x-2\right)\left(x+2\right)}\)
\(A=\frac{x^2+2x+12x}{x\left(x-2\right)\left(x+2\right)}\)
\(A=\frac{x^2+14x}{x\left(x-2\right)\left(x+2\right)}\)
Rút gọn A=\(\left(\frac{2+x}{2-x}-\frac{4x^2}{x^2-4}-\frac{2-x}{2+x}\right):\frac{x^2-3x}{2x^2-x^3}\)
Điều kiện: x\(\ne\) 0; x \(\ne\) 2; -2; 3
A=\(\left(\frac{2+x}{2-x}+\frac{4x^2}{\left(2-x\right)\left(2+x\right)}-\frac{2-x}{2+x}\right):\frac{x\left(x-3\right)}{x^2\left(2-x\right)}\)
A = \(\left(\frac{\left(2+x\right)^2}{\left(2-x\right)\left(2+x\right)}+\frac{4x^2}{\left(2-x\right)\left(2+x\right)}-\frac{\left(2-x\right)^2}{\left(2-x\right)\left(2+x\right)}\right).\frac{x\left(2-x\right)}{\left(x-3\right)}\)
A = \(\frac{x^2+4x+4+4x^2-\left(4-4x+x^2\right)}{\left(2-x\right)\left(2+x\right)}.\frac{x\left(2-x\right)}{\left(x-3\right)}\)
A = \(\frac{8x+4x^2}{\left(2+x\right)}.\frac{x}{\left(x-3\right)}=\frac{4x\left(x+2\right)}{\left(x+2\right)}.\frac{x}{x-3}=\frac{4x^2}{x-3}\)
\(P=\frac{x^3-4x}{x^2+4}\cdot\left(\frac{1}{x^2+4x+4}+\frac{1}{4-x^2}\right)\)
rút gọn P
ĐK: \(\hept{\begin{cases}x^2+4x+4\ne0\\4-x^2\ne0\end{cases}}\Rightarrow\hept{\begin{cases}\left(x+2\right)^2\ne0\\\left(2-x\right)\left(2+x\right)\ne0\end{cases}\Rightarrow\hept{\begin{cases}x\ne-2\\x\ne2\end{cases}}}\)
\(P=\frac{x^3-4x}{x^2+4}.\left(\frac{1}{x^2+4x+4}+\frac{1}{4-x^2}\right)\)
\(=\frac{x\left(x^2-4\right)}{x^2+4}.\left(\frac{1}{\left(x+2\right)^2}+\frac{-1}{\left(x-2\right)\left(x+2\right)}\right)\)
\(=\frac{x\left(x^2-4\right)}{x^2+4}.\left(\frac{x-2-\left(x+2\right)}{\left(x+2\right)^2\left(x-2\right)}\right)\)
\(=\frac{x\left(x-2\right)\left(x+2\right)}{x^2+4}.\frac{-4}{\left(x+2\right)^2\left(x-2\right)}=\frac{-4x}{\left(x^2+4\right)\left(x+2\right)}\)
Cho \(S=\left(\frac{2+x}{2-x}+\frac{4x^2}{x^2-4}-\frac{2-x}{2+x}\right):\frac{x^3-3x}{2x^2-x^3}\)
Rút gọn S
Đề sai ạ ! Sửa nhé :
\(S=\left(\frac{2+x}{2-x}+\frac{4x^2}{x^2-4}-\frac{2-x}{2+x}\right):\frac{x^3-4x}{2x^2-x^3}\)
\(\Leftrightarrow S=\left(\frac{-\left(x+2\right)}{x-2}+\frac{4x^2}{\left(x-2\right)\left(x+2\right)}+\frac{x-2}{x+2}\right):\frac{x\left(x^2-4\right)}{x^2\left(2-x\right)}\)
\(\Leftrightarrow S=\left(\frac{-\left(x+2\right)^2+4x^2+\left(x-2\right)^2}{\left(x-2\right)\left(x+2\right)}\right):\frac{\left(x-2\right)\left(x+2\right)}{-x\left(x-2\right)}\)
\(\Leftrightarrow S=\frac{-x^2-4x-4+4x^2+x^2-4x+4}{\left(x+2\right)\left(x-2\right)}.\frac{-x}{\left(x+2\right)}\)
\(\Leftrightarrow S=\frac{-x\left(4x^2-8x\right)}{\left(x+2\right)^2\left(x-2\right)}\)
\(\Leftrightarrow S=\frac{-4x^2\left(x-2\right)}{\left(x+2\right)^2\left(x-2\right)}\)
\(\Leftrightarrow S=\frac{-4x^2}{\left(x+2\right)^2}\)
P/s : nếu làm theo đề của bạn, sẽ ra kq dài... Nên mik tiện sửa, còn nếu đề bạn đúng rồi thì mik sẽ làm lại ạ !
mình nhầm tí nhé bạn
\(\frac{x^2-3x}{2x^2-x^3}\)
P/s : Làm theo đề đã sửa ạ !
\(S=\left(\frac{2+x}{2-x}+\frac{4x^2}{x^2-4}-\frac{2-x}{2+x}\right):\frac{x^2-3x}{2x^2-x^3}\)
\(\Leftrightarrow S=\left(\frac{-\left(x+2\right)}{x-2}+\frac{4x^2}{\left(x-2\right)\left(x+2\right)}+\frac{x-2}{2+x}\right):\frac{x\left(x-3\right)}{-x^2\left(x-2\right)}\)
\(\Leftrightarrow S=\frac{-\left(x+2\right)^2+4x^2+\left(x-2\right)^2}{\left(x-2\right)\left(x+2\right)}.\frac{-x\left(x-2\right)}{\left(x-3\right)}\)
\(\Leftrightarrow S=\frac{-x\left(-x^2-4x-4+4x^2+x^2-4x+4\right)\left(x-2\right)}{\left(x-2\right)\left(x+2\right)\left(x-3\right)}.\)
\(\Leftrightarrow S=\frac{-x\left(4x^2-8x\right)}{\left(x+2\right)\left(x-3\right)}\)
\(\Leftrightarrow S=\frac{4x^2\left(2-x\right)}{\left(x+2\right)\left(x-3\right)}\)
Cho biểu thức \(M=\left(\frac{x+2}{3x}+\frac{2}{x+1}-3\right):\frac{2-4x}{x+1}-\frac{3x-x^2+1}{3x}\)
A, Rút gọn bthuc M
B, tính gtri bthuc rút gọn của M tại x=6013
a) \(ĐKXĐ:\hept{\begin{cases}x\ne0\\x\ne-1\end{cases}}\)
\(M=\left(\frac{x+2}{3x}+\frac{2}{x+1}-3\right):\frac{2-4x}{x+1}-\frac{3x-x^2+1}{3x}\)
\(=\left[\frac{\left(x+2\right)\left(x+1\right)}{3x\left(x+1\right)}+\frac{6x}{3x\left(x+1\right)}-\frac{9x\left(x+1\right)}{3x\left(x+1\right)}\right].\frac{x+1}{2-4x}+\frac{x^2-3x-1}{3x}\)
\(=\left[\frac{x^2+3x+2}{3x\left(x+1\right)}+\frac{6x}{3x\left(x+1\right)}-\frac{9x^2+9x}{3x\left(x+1\right)}\right].\frac{x+1}{2-4x}+\frac{x^2-3x-1}{3x}\)
\(=\frac{x^2+3x+2+6x-9x^2-9x}{3x\left(x+1\right)}.\frac{x+1}{2-4x}+\frac{x^2-3x-1}{3x}\)
\(=\frac{2-8x^2}{3x}.\frac{1}{2\left(1-2x\right)}+\frac{x^2-3x-1}{3x}\)
\(=\frac{2\left(1-4x^2\right)}{3x}.\frac{1}{2\left(1-2x\right)}+\frac{x^2-3x-1}{3x}\)
\(=\frac{2\left(1-2x\right)\left(1+2x\right)}{3x}.\frac{1}{2\left(1-2x\right)}+\frac{x^2-3x-1}{3x}\)
\(=\frac{1+2x}{3x}+\frac{x^2-3x-1}{3x}\)
\(=\frac{1+2x+x^2-3x-1}{3x}=\frac{x^2-x}{3x}=\frac{x\left(x-1\right)}{3x}=\frac{x-1}{3}\)
b) Với \(x=6013\)( thỏa mãn ĐKXĐ )
Thay \(x=6013\)vào biểu thức ta được:
\(M=\frac{6013-1}{3}=\frac{6012}{3}=2004\)
Rút gọn A=\(\left(\frac{x-1}{x^2-2x}\frac{x+1}{x^2+2x}\frac{4}{x^3-4x}\right):\frac{4040}{x}\)
zrfdasfdefđsdfrdssưdfdttdfgtfrỷ5ytỷ5ỷt