chứng minh đẳng thức
\(\sqrt[3]{6+\sqrt{\frac{847}{27}}}+\sqrt[3]{6-\sqrt{\frac{847}{27}}}=3\)
Tính C=\(\sqrt[3]{6+\sqrt{\frac{847}{27}}}+\sqrt[3]{6-\sqrt{\frac{847}{27}}}\)
Tính:
\(x=\sqrt[3]{6+\sqrt{\frac{847}{27}}}+\sqrt[3]{6-\sqrt{\frac{847}{27}}}\)
hình thức đăng vui phương pháp lập phương hai vế sau đó nhẩm nghiệm dùng tiếp sơ đồ hoc-ne :))) là ok
\(x^3=6+\sqrt{\frac{847}{27}}+6-\sqrt{\frac{847}{27}}+3.\sqrt[3]{\left[6^2-\left(\sqrt{\frac{847}{27}}\right)^2\right]}.x\)
\(\Rightarrow x^3=12+3.\sqrt[3]{\frac{125}{27}}x\)
\(\Leftrightarrow x^3-5x-12=0\)
\(\Leftrightarrow x^3-9x+4x-12=0\)
\(\Leftrightarrow x\left(x+3\right)\left(x-3\right)+4\left(x-3\right)=0\)
\(\Leftrightarrow\left(x-3\right)\left(x^2+3x+4\right)=0\).Vì \(x^2+3x+4=x^2+2.\frac{3}{2}.x+\frac{9}{4}+\frac{7}{4}=\left(x+\frac{3}{2}\right)^2+\frac{7}{4}>0\)
\(\Leftrightarrow x=3\)
Sao lại phân tích như thế????? Dòng thứ 4 ko biết dùng sơ đồ hoc-ne à?????
Tính giá trị biểu thức :
\(P=\sqrt[3]{6+\sqrt{\frac{847}{27}}}+\sqrt[3]{6-\sqrt{\frac{847}{27}}}\)
\(P=\sqrt[3]{6+\sqrt{\frac{847}{27}}}+\sqrt[3]{6+\sqrt{\frac{847}{27}}}\)
Ta áp dụng hằng đẳng thức :
\(\left(a+b\right)^3=a^3+b^3+3ab\left(a+b\right)\)
\(\Rightarrow P^3=6+\sqrt{\frac{847}{27}}+6-\sqrt{\frac{847}{27}}+3\sqrt[3]{6+\sqrt{\frac{847}{27}}}.\sqrt[3]{6-\sqrt{\frac{847}{27}}}\left(3\sqrt[3]{6+\sqrt{\frac{847}{27}}}.\sqrt[3]{6-\sqrt{\frac{847}{27}}}\right)\)
\(\Leftrightarrow P^3=12+3.\sqrt[3]{36-\frac{847}{27}}.P=12+5P\)
\(\Leftrightarrow P^3-5P-12=0\)
\(\Leftrightarrow\left(P-3\right)\left(P^2+3P+4\right)=0\)
\(\Leftrightarrow P=3\) hoặc \(P^3+3P+4=0\) vô nghiệm
Vậy \(P=3\)
1) Chứng minh đẳng thức \(\left(\frac{3\sqrt{2}-\sqrt{6}}{\sqrt{27}-3}-\frac{\sqrt{150}}{3}\right).\frac{1}{\sqrt{6}}=-\frac{4}{3}\)
2) Chứng minh \(\sqrt{\sqrt{3}-\sqrt{3-\sqrt{13-4\sqrt{3}}}}=1\)
Chứng minh rằng: \(\frac{1}{6}< \frac{3-\sqrt{6+\sqrt{6+\sqrt{6+...+\sqrt{6+\sqrt{6}}}}}}{3-\sqrt{6+\sqrt{6+\sqrt{6+...+\sqrt{6}}}}}< \frac{5}{27}\)
Trong đó, biểu thức ở tử chứa n dấu căn, biểu thức ở mẫu chứa n-1 dấu căn.
Em thử nhá, ko chắc đâu ạ. Em chỉ làm đc một cái thôi
Gọi biểu thức trên là A
*Chứng minh A > 1/6
Đặt \(x=\sqrt{6+\sqrt{6+\sqrt{6+...+\sqrt{6}}}}\left(\text{n dấu căn}\right)\)
Thì \(x=\sqrt{6+\sqrt{6+\sqrt{6+...+\sqrt{6}}}}< \sqrt{6+\sqrt{6+\sqrt{6+...+\sqrt{9}}}}=\sqrt{6+3}=3\) (1)
Và \(x^2-6=\sqrt{6+\sqrt{6+...+\sqrt{6}}}\left(\text{n -1 dấu căn}\right)\)
Biểu thức trở thành \(A=\frac{3-x}{9-x^2}=\frac{1}{3+x}\). Từ (1) suy ra \(A>\frac{1}{3+3}=\frac{1}{6}\)(*)
Chứng minh rằng: \(\sqrt[3]{\sqrt{\frac{2303}{27}+6}}-\sqrt[3]{\sqrt{\frac{2303}{27}-6}}\)6 là các số nguyên
Bạn không sửa thì m sửa.
Sửa đề: \(P=\sqrt[3]{\sqrt{\frac{2303}{27}}+6}-\sqrt[3]{\sqrt{\frac{2303}{27}}-6}\)
\(P^3=\sqrt{\frac{2303}{27}}+6-\left(\sqrt{\frac{2303}{27}}-6\right)-\frac{3.11.P}{3}\)
\(\Leftrightarrow P^3=12-11P\)
\(\Leftrightarrow P^3+11P-12=0\)
\(\Leftrightarrow\left(P-1\right)\left(P^2+P+12\right)=0\)
Vì \(P^2+P+12>0\) nên ta có
\(P=1\)
theo tớ là cậu chép sai đề rồi cậu chép lại đi
Chứng minh đẳng thức:
\(\frac{3}{2}\sqrt{6}+2\sqrt{\frac{2}{3}}-4\sqrt{\frac{3}{2}}=\frac{\sqrt{6}}{6}\)
Để câu trả lời của bạn nhanh chóng được duyệt và hiển thị, hãy gửi câu trả lời đầy đủ và không nên:
Yêu cầu, gợi ý các bạn khác chọn (k) đúng cho mìnhChỉ ghi đáp số mà không có lời giải, hoặc nội dung không liên quan đến câu hỏi.Chứng minh đẳng thức:
\(\frac{3}{2}\sqrt{6}+2\sqrt{\frac{2}{3}}-4\sqrt{\frac{3}{2}}=\frac{\sqrt{6}}{6}\)
Chứng minh các đẳng thức sau:
\(\frac{3}{2}\sqrt{6}+2\sqrt{\frac{2}{3}}-4\sqrt{\frac{3}{2}}=\frac{\sqrt{6}}{6}\)