cho A = 1/4 + 1/9 + 1/16 + 1/25 +1/36 + 1/49 + 1/64 + 1/81 . Chứng tỏ A > 2/5
S = 1/4 + 1/9 + 1/16 + 1/25 + 1/36 + 1/49 + 1/64 + 1/81
CMR: 2/2 < S < 8/9
S=1/4+1/9+1/16+1/25+1/36+1/49+1/64+1/81=1-1/81=1/81
vô lí vì 2/2 = 1 mà 8/9 < 1
Tính nhanh:
a,1/4+2/5+6/8+9/15+8/1
b,1/2+2/4+3/6+4/8+5/10+6/12+7/14+8/16+9/18+10/20
c,1/10+4/20+9/30+16/40+25/50+36/60+49/70+64/80+81/90
a; \(\dfrac{1}{4}\) + \(\dfrac{2}{5}\) + \(\dfrac{6}{8}\) + \(\dfrac{9}{15}\) + \(\dfrac{8}{1}\)
= (\(\dfrac{1}{4}\) + \(\dfrac{6}{8}\)) + (\(\dfrac{2}{5}\) + \(\dfrac{9}{15}\)) + \(\dfrac{8}{1}\)
= (\(\dfrac{1}{4}\) + \(\dfrac{3}{4}\)) + (\(\dfrac{2}{5}\) + \(\dfrac{3}{5}\)) + 8
= 1 + 1 + 8
= 2 + 8
= 10
b; \(\dfrac{1}{2}\) + \(\dfrac{2}{4}\) + \(\dfrac{3}{6}\) + \(\dfrac{4}{8}\) + \(\dfrac{5}{10}\) + \(\dfrac{6}{12}\) + \(\dfrac{7}{14}\) + \(\dfrac{8}{16}\) + \(\dfrac{10}{20}\)
= \(\dfrac{1}{2}\) + \(\dfrac{1}{2}\) x (\(\dfrac{2}{2}\) + \(\dfrac{3}{3}\) + \(\dfrac{4}{4}\) + \(\dfrac{5}{5}\)+ \(\dfrac{6}{6}+\dfrac{7}{7}+\dfrac{8}{8}\) + \(\dfrac{10}{10}\))
= \(\dfrac{1}{2}\) + \(\dfrac{1}{2}\) x (1 + 1 +1 + 1+ 1+ 1+ 1 +1)
= \(\dfrac{1}{2}\) + \(\dfrac{1}{2}\) x 1 x 8
= \(\dfrac{1}{2}\) + \(\)\(\dfrac{1}{2}\) x 8
= \(\dfrac{1}{2}\) + 4
= \(\dfrac{9}{2}\)
c; \(\dfrac{1}{10}\) + \(\dfrac{4}{20}\) + \(\dfrac{9}{30}\)+\(\dfrac{16}{40}+\dfrac{25}{50}+\dfrac{36}{60}+\dfrac{49}{70}+\dfrac{64}{80}+\dfrac{81}{90}\)
= \(\dfrac{1}{10}+\dfrac{2}{10}+\dfrac{3}{10}+\dfrac{4}{10}+\dfrac{5}{10}+\dfrac{6}{10}+\dfrac{7}{10}+\dfrac{8}{10}+\dfrac{9}{10}\)
= \(\dfrac{1+2+3+4+5+6+7+8+9}{10}\)
= \(\dfrac{\left(1+9\right)+\left(2+8\right)+\left(3+7\right)+\left(4+6\right)+5}{10}\)
= \(\dfrac{10+10+10+10+5}{10}\)
= \(\dfrac{\left(10+10+10+10\right)+5}{10}\)
= \(\dfrac{10\times4+5}{10}\)
= \(\dfrac{45}{10}\)
= \(\dfrac{9}{2}\)
Tính nhanh:
a,1/4+2/5+6/8+9/15+8/1
b,1/2+2/4+3/6+4/8+5/10+6/12+7/14+8/16+9/18+10/20
c,1/10+4/20+9/30+16/40+25/50+36/60+49/70+64/80+81/90
a; \(\dfrac{1}{4}\) + \(\dfrac{2}{5}\) + \(\dfrac{6}{8}\) + \(\dfrac{9}{15}\) + \(\dfrac{8}{1}\)
= (\(\dfrac{1}{4}\) + \(\dfrac{6}{8}\)) + (\(\dfrac{2}{5}\) + \(\dfrac{9}{15}\)) + 8
= (\(\dfrac{1}{4}\) + \(\dfrac{3}{4}\)) + (\(\dfrac{2}{5}\) + \(\dfrac{3}{5}\)) + 8
= 1 + 1 + 8
= 2 + 8
= 10
b; \(\dfrac{1}{2}\) + \(\dfrac{2}{4}\) + \(\dfrac{3}{6}\) + \(\dfrac{4}{8}\) + \(\dfrac{5}{10}\) + \(\dfrac{6}{12}\) + \(\dfrac{7}{14}\) + \(\dfrac{8}{16}\) + \(\dfrac{9}{18}\) + \(\dfrac{10}{20}\)
= \(\dfrac{1}{2}\) + \(\dfrac{1}{2}\) + \(\dfrac{1}{2}\) + \(\dfrac{1}{2}\) + \(\dfrac{1}{2}\) + \(\dfrac{1}{2}\) + \(\dfrac{1}{2}\) + \(\dfrac{1}{2}\) + \(\dfrac{1}{2}\) + \(\dfrac{1}{2}\)
= \(\dfrac{1}{2}\) x 10
= 5
c; \(\dfrac{1}{10}\) + \(\dfrac{4}{20}\) + \(\dfrac{9}{30}\)+\(\dfrac{16}{40}+\dfrac{25}{50}+\dfrac{36}{60}+\dfrac{49}{70}+\dfrac{64}{80}+\dfrac{81}{90}\)
= \(\dfrac{1}{10}+\dfrac{2}{10}+\dfrac{3}{10}+\dfrac{4}{10}+\dfrac{5}{10}+\dfrac{6}{10}+\dfrac{7}{10}+\dfrac{8}{10}+\dfrac{9}{10}\)
= \(\dfrac{1+2+3+4+5+6+7+8+9}{10}\)
= \(\dfrac{\left(1+9\right)+\left(2+8\right)+\left(3+7\right)+\left(4+6\right)+5}{10}\)
= \(\dfrac{10+10+10+10+5}{10}\)
= \(\dfrac{\left(10+10+10+10\right)+5}{10}\)
= \(\dfrac{10\times4+5}{10}\)
= \(\dfrac{45}{10}\)
= \(\dfrac{9}{2}\)
1/5+4/10+9/15+16/20+25/25+36/30+49/35+64/60+81/45
1+4+9+16+25+36+49+64+81+100=?
bấm máy tính đi bạn, nhanh hơn
ĐÂY LÀ TÍNH NHANH
theo đề bài ra ta có:1+4+9+16+25+36+49+64+81+100
=(1+49)+(4+16)+(9+81)+(36+64)+(25+100)
=50+20+100+100+125
=70+100+100+125
=170+100+125
=270+125
=395
A = 1/2 + 1/9 + 1/16 + 1/25 + 1/36 + 1/49 + 1/64 + 1/81 + 1/100
a) Tính tổng của A
b) Và so sánh tông của A với 1
a) Quy đồng pso và tính như bthg (4824829/6350400)
b) Vì 4814819 < 6350400 => A < 1
tính nhanh :
1/5+4/10+9/15+16/20+25/25+36/30+49/35+64/40+81/45
cần gấp mn !!!
Ta có: \(\dfrac{1}{5}+\dfrac{4}{10}+\dfrac{9}{15}+\dfrac{16}{20}+\dfrac{25}{25}+\dfrac{36}{30}+\dfrac{49}{35}+\dfrac{64}{40}+\dfrac{81}{45}\)
\(=\dfrac{1}{5}+\dfrac{2}{5}+\dfrac{3}{5}+\dfrac{4}{5}+\dfrac{5}{5}+\dfrac{6}{5}+\dfrac{7}{5}+\dfrac{8}{5}+\dfrac{9}{5}\)
\(=\dfrac{45}{5}=9\)
\(\dfrac{1}{5}+\dfrac{4}{10}+\dfrac{9}{15}+...+\dfrac{81}{45}\\ =\dfrac{1}{5}+\dfrac{2}{5}+\dfrac{3}{5}+...+\dfrac{9}{15}\\ =\dfrac{\left(1+2+3+...+9\right)}{15}=\dfrac{\left(1+9\right)x9:2}{15}\\ =\dfrac{10x9:2}{15}=\dfrac{45}{15}=3\)
1/5+4/10+9/15+16/20+25/25+36/30+49/35+64/40+81/45
1/5+4/10+9/15+16/20+25/25+36/30+49/35+64/40+81/45 = 1/5 + 2/5 + 3/5 + 4/5 + 1 + 6/5 + 7/5 + 8/5 + 9/5 = (1/5 + 9/5) + (2/5 + 8/5) + (3/5 + 7/5) + (4/5 + 6/5) + 1 = 2 + 2 + 2 + 2 + 1 = 9
Bài 4 : CHỉ ra tính chất đặc trưng của các phần tử thuộc tập hợp đó
a ) A = { 1 ; 4 ; 9 ; 16 ; 25 ; 36 ; 49 }
b ) B = { 1 ; 7 ; 13 ; 19 ; 25 ; 31 ; 37 }
c ) A = { 1 ; 4 ; 9 ; 16 ; 25 ; 36 ; 49 ; 64 ; 81 ; 100 }
d ) B = { 2 ; 6 ; 12 ; 20 ; 30 ; 42 ; 56 ; 72 ; 90 }
a, A là cộng theo số lẻ ( 1 + 3 = 4 ,4 + 5 = 9.....) bắt đầu từ 3
b , B là mỗi lần cộng thêm 6
c , A là cộng theo số lẻ ( 1 + 3 = 4 ,4 + 5 = 9.....)
d, B là cộng theo số chẵn bắt đầu từ 4
hok tốt