Cho ab+bc+ac=0. Tính \(A=\frac{bc}{a^2+2bc}+\frac{ac}{b^2+2ac}+\frac{ab}{c^2+2ab}\).
Cho a,b,c đôi một khác nhau và \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=0\)
Tính \(A=\frac{bc+1}{a^2+2bc}+\frac{ac+1}{b^2+2ac}+\frac{ab+1}{c^2+2ab}\)
\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=0\)
\(\Leftrightarrow\)\(\frac{bc+ac+ab}{abc}=0\)
\(\Leftrightarrow\)\(bc+ac+ab=0\)
\(\Leftrightarrow\)\(\hept{\begin{cases}bc=-ab-ac\\ac=-ab-bc\\ab=-bc-ac\end{cases}}\)\(\Leftrightarrow\)\(\hept{\begin{cases}a^2+2bc=a^2+bc-ab-ac=\left(a-b\right)\left(a-c\right)\\b^2+2ac=b^2+ac-ab-bc=\left(b-a\right)\left(b-c\right)\\c^2+2ab=c^2+ab-bc-ac=\left(c-a\right)\left(c-b\right)\end{cases}}\)
\(A=\frac{bc+1}{\left(a-b\right)\left(a-c\right)}+\frac{ac+1}{\left(b-a\right)\left(b-c\right)}+\frac{ab+1}{\left(c-a\right)\left(c-b\right)}\)
= \(\frac{bc\left(b-c\right)+b-c+ac\left(c-a\right)+c-a+ab\left(a-b\right)+a-b}{\left(a-b\right)\left(a-c\right)\left(b-c\right)}\)
= \(\frac{bc\left(b-c\right)+ca\left(c-a\right)-ab\left(b-c\right)-ab\left(c-a\right)}{\left(a-b\right)\left(a-c\right)\left(b-c\right)}\)
= \(\frac{\left(b-c\right)\left(bc-ab\right)+\left(c-a\right)\left(ca-ab\right)}{\left(a-b\right)\left(a-c\right)\left(b-c\right)}\)
= \(\frac{b\left(b-c\right)\left(c-a\right)+a\left(c-a\right)\left(c-b\right)}{\left(a-b\right)\left(a-c\right)\left(b-c\right)}\)
= \(\frac{\left(a-c\right)\left(b-c\right)\left(a-b\right)}{\left(a-b\right)\left(a-c\right)\left(b-c\right)}=1\)
Cho a,b,c khác nhau đôi một và \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=0\)
Rút gọn
a) \(A=\frac{bc}{a^2+2bc}+\frac{ac}{b^2+2ac}+\frac{ab}{c^2+2ab}\)
b) \(B=\frac{1}{a^2+2bc}+\frac{1}{b^2+2ac}+\frac{1}{c^2+2ab}\)
c) \(C=\frac{a^2}{a^2+2bc}+\frac{b^2}{b^2+2ac}+\frac{c^2}{c^2+2ab}\)
Cho 3 so thuc a b c \(\ne0\)thoa man \(\left(a+b+c\right)^2=a^2+b^2+c^2\). CMR
\(\frac{a^2}{a^2+2bc}+\frac{b^2}{b^2+2ac}+\frac{c^2}{c^2+2ab}=\frac{bc}{a^2+2bc}+\frac{ac}{b^2+2ac}+\frac{ab}{c^2+2ab}\)
Ch ba số a,b,c khác 0 và ab+bc+ac=0
Tính giá trị của biểu thức A= ((a^2 / (a^2 + 2bc) + b^2 / (b^2 + 2ac) + c^2 / (c^2 + 2ba)) / (bc/(a^2 + 2bc) + ac/(b^2 + 2ac) + ab/(c^2+2ab))
cho a,b,c khác 0 và\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=0\)
Tính B=\(\frac{bc+1}{a^2+2bc}+\frac{ca+1}{b^2+2ac}+\frac{ab+1}{c^2+2ab}\)
\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=0\Rightarrow\frac{ab+bc+ac}{abc}=0\)
\(\Rightarrow ab+bc+ac=0\Rightarrow\hept{\begin{cases}ab=-ac-bc\\bc=-ab-ac\\ac=-ab-bc\end{cases}}\)
\(a^2+2bc=a^2+bc+bc=a^2+bc-ab-ac=a\left(a-b\right)-c\left(a-b\right)=\left(a-b\right)\left(a-c\right)\)
Tương tự: \(b^2+2ac=\left(b-c\right)\left(b-a\right)\)
\(c^2+2ab=\left(a-c\right)\left(b-c\right)\)
\(B=\frac{bc+1}{\left(a-b\right)\left(a-c\right)}+\frac{ca+1}{\left(b-a\right)\left(b-c\right)}+\frac{ab+1}{\left(a-c\right)\left(b-c\right)}\)
\(=\frac{bc+1}{\left(a-b\right)\left(a-c\right)}-\frac{ca+1}{\left(a-b\right)\left(b-c\right)}+\frac{ab+1}{\left(a-c\right)\left(b-c\right)}\)
\(=\frac{\left(bc+1\right)\left(b-c\right)-\left(ca+1\right)\left(a-c\right)+\left(ab+1\right)\left(a-b\right)}{\left(a-b\right)\left(b-c\right)\left(a-c\right)}\)
\(\left(bc+1\right)\left(b-c\right)-\left(ca+1\right)\left(a-c\right)+\left(ab+1\right)\left(a-b\right)\)
\(=\left(bc+1\right)\left(b-c\right)-\left(ca+1\right)\left(a-b\right)-\left(ca+1\right)\left(b-c\right)+\left(ab+1\right)\left(a-b\right)\)
\(=\left(b-c\right)\left(bc+1-ca-1\right)+\left(a-b\right)\left(ab+1-ca-1\right)\)
\(=\left(b-c\right)\left(bc-ca\right)+\left(a-b\right)\left(ab-ca\right)\)
\(=\left(b-c\right)c\left(b-a\right)+\left(a-b\right)a\left(b-c\right)\)
\(=\left(a-b\right)\left(b-c\right)\left(a-c\right)\)
Vậy B = 1
Cho a ,b ,c khác nhau đôi một và \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=0\) . Rút gọn các biểu thức sau :
A=\(\frac{1}{a^2+2bc}+\frac{1}{b^2+2ac}+\frac{1}{c^2+2ab}\)
B=\(\frac{bc+1}{a^2+2bc}+\frac{ca+1}{b^2+2ac}+\frac{ab+1}{c^2+2ab}\)
C=\(\frac{a^2}{a^2+2bc}+\frac{b^2}{b^2+2ac}+\frac{c^2}{c^2+2ab}\)
D=\(\frac{a^2+bc}{a^2+2bc}+\frac{b^2+ca}{b^2+2ca}+\frac{c^2+ab}{c^2+2ab}\)
P/S : Sẵn tiện mọi người cho mình hỏi " Đều khác nhau đôi một " là sao ạ ? Mình đọc không hiểu rõ đề cho lắm
a,b,c khác nhau đôi một nghĩa là từng cặp số khác nhau ,là:
+a khác b
+b khác c
+c khác a
\(A=\frac{1}{a^2+2bc}+\frac{1}{b^2+2ac}+\frac{1}{c^2+2ab}\)
Từ \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=0=>\frac{ab+bc+ac}{abc}=0=>ab+bc+ac=0\)
Suy ra: \(ab==-\left(bc+ac\right)=-bc-ac\)
\(bc=-\left(ab+ac\right)=-ab-ac\)
\(ac=-\left(ab+bc\right)=-ab-bc\)
Nên \(a^2+2ab=a^2+bc+bc=a^2+bc+\left(-ab-ac\right)=a\left(a-b\right)-c\left(a-b\right)=\left(a-b\right)\left(a-c\right)\)
Tương tự,ta cũng có: \(b^2+2ac=\left(b-a\right)\left(b-c\right)\)
\(c^2+2ab=\left(c-a\right)\left(c-b\right)\)
Vậy \(A=\frac{1}{\left(a-b\right)\left(a-c\right)}+\frac{1}{\left(b-c\right)\left(b-c\right)}+\frac{1}{\left(c-a\right)\left(c-b\right)}=\frac{b-c+c-a+a-b}{\left(a-b\right)\left(b-c\right)\left(a-c\right)}=0\)
ta có 1/a+1/b+1/c=0
=>bc+ac+ab/abc+0
=>bc+ac+ab=0
=>bc=-ac-ab
ac=-bc-ab
ab=-bc-ac
A=1/(a^2+bc-ac-ab)+1/(b^2+ac-bc-ab)+1/(c^2+ab-bc-ac)
=1/c(a-c)-b(a-c)+1/b(b-c)-a(b-c)+1/c(c-b)-a(c-b)
=1/(a-b)(a-c)+1/(b-a)(b-c)+1/(a-c)(c-b)
=b-c-a+c+a-b/(a-c)(a-b)(b-c)=0
('/': dấu gạch ngang ở giữa phân số)
Cho ba số a,b,c khác 0 thỏa mãn:
\(\left(a+b+c\right)^{^2}=a^{^2}+b^{^2}+c^{^2}\)
Tính giá trị biểu thức: \(A=\frac{bc}{a^{^2}+2bc}+\frac{ac}{a^{^2}+2ac}+\frac{ab}{c^{^2}+2ab}\)
https://hoc24.vn/hoi-dap/question/794424.html
Cho ba số a,b,c khác 0 và ab+bc+ac=0. Tính giá trị của biểu thức
A=\(\dfrac{\dfrac{a^2}{a^2+2bc}+\dfrac{b^2}{b^2+2ac}+\dfrac{c^2}{c^2+2ab}}{\dfrac{bc}{a^2+2bc}+\dfrac{ac}{b^2+2ac}+\dfrac{ab}{c^2+2ab}}\)
Lời giải:
Xét tử :
\(\frac{a^2}{a^2+2bc}+\frac{b^2}{b^2+2ac}+\frac{c^2}{c^2+2ab}=\frac{a^2}{a^2+bc+(-ab-ac)}+\frac{b^2}{b^2+ac+(-ab-bc)}+\frac{c^2}{c^2+ab+(-bc-ac)}\)
\(=\frac{a^2}{a(a-b)-c(a-b)}+\frac{b^2}{b(b-c)-a(b-c)}+\frac{c^2}{c(c-a)-b(c-a)}\)
\(=\frac{a^2}{(a-c)(a-b)}+\frac{b^2}{(b-a)(b-c)}+\frac{c^2}{(c-a)(c-b)}\)
\(=\frac{a^2(c-b)+b^2(a-c)+c^2(b-a)}{(a-b)(b-c)(c-a)}\)
\(=\frac{(ab^2+bc^2+ca^2)-(a^2b+b^2c+c^2a)}{(ab^2+bc^2+ca^2)-(a^2b+b^2c+c^2a)}=1\)
Xét mẫu (tương tự bên tử)
\(\frac{bc}{a^2+2bc}+\frac{ac}{b^2+2ac}+\frac{ab}{c^2+2ab}=\frac{bc}{(a-c)(a-b)}+\frac{ac}{(b-a)(b-c)}+\frac{ab}{(c-a)(c-b)}\)
\(=\frac{bc(c-b)+ac(a-c)+ab(b-a)}{(a-b)(b-c)(c-a)}=\frac{(ab^2+bc^2+ca^2)-(a^2b+b^2c+c^2a)}{(a-b)(b-c)(c-a)}\)
\(=\frac{(ab^2+bc^2+ca^2)-(a^2b+b^2c+c^2a)}{(ab^2+bc^2+ca^2)-(a^2b+b^2c+c^2a)}=1\)
Do đó:
\(A=\frac{1}{1}=1\)
Cho a,b,c khác nhau đôi một và \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=0\). Rút gọn các biểu thức sau:
a)\(M=\frac{1}{a^2+2bc}+\frac{1}{b^2+2ac}+\frac{1}{c^2+2ab}\)
b)\(N=\frac{bc}{a^2+2bc}+\frac{ca}{b^2+2ac}+\frac{ab}{c^2+2ab}\)
c)\(P=\frac{a^2}{a^2+2bc}+\frac{b^2}{b^2+2ac}+\frac{c^2}{c^2+2ab}\)
khó quá xin lỗi nha em mới hok lớp 7
Câu này lớp 7 tớ có làm. Cũng như cái mà gọi là áp dụng t/c dãy tỉ số bằng nhau và tỉ lệ thức. mình tính ra dc a, b. c rồi.