\(\dfrac{4}{-25x^2+20x-3}=\dfrac{3}{5x-1}-\dfrac{2x}{5x-3}\)
thực hiện phép tính
a)\(\dfrac{2x^2-20x+50}{3x+3}\times\dfrac{x^2-1}{4\left(x-5\right)^2}\)
b) \(\dfrac{6x-3}{5x^2+x}\times\dfrac{25x^2+10x+1}{1-8x^3}\)
c) \(\dfrac{3x^2-x}{x^2-1}\times\dfrac{1-x^4}{\left(1-3x\right)^3}\)
a/ \(\dfrac{2x^2-20x+50}{3x+3}\cdot\dfrac{x^2-1}{4\left(x-5\right)^2}=\dfrac{2\left(x^2-10x+25\right)\cdot\left(x^2-1\right)}{3\left(x+1\right)\cdot4\left(x-5\right)^2}=\dfrac{2\left(x-5\right)^2\left(x-1\right)\left(x+1\right)}{12\left(x+1\right)\left(x-5\right)^2}=\dfrac{x+1}{6}\)
b/ \(\dfrac{6x-3}{5x^2+x}\cdot\dfrac{25x^2+10x+1}{1-8x^2}=-\dfrac{3\left(1-2x\right)\cdot\left(5x+1\right)^2}{x\left(5x+1\right)\left(1-2x\right)\left(1+2x+4x^2\right)}=\dfrac{3\left(5x+1\right)}{x\left(4x^2+2x+1\right)}\)
c/ \(\dfrac{3x^2-x}{x^2-1}\cdot\dfrac{1-x^4}{\left(1-3x\right)^3}=\dfrac{x-3x^2}{1-x^2}\cdot\dfrac{\left(1-x^2\right)\left(1+x^2\right)}{\left(1-3x\right)^3}=\dfrac{x\left(1-3x\right)\left(1-x^2\right)\left(1+x^2\right)}{\left(1-x^2\right)\left(1-3x\right)^3}=\dfrac{x\left(x^2+1\right)}{\left(1-3x\right)^3}\)
Dễ thế mà bạn ( người ko quen) ko làm đc !
\(\sqrt{25x+5}+\sqrt{45}\sqrt{20x+4}-\sqrt{\dfrac{5x+1}{16}}=\dfrac{27\sqrt{5}}{4}\)
tìm x
=>\(\sqrt{5x+1}\left(\sqrt{5}-6\sqrt{5}-\dfrac{1}{4}\right)=\dfrac{27\sqrt{5}}{4}\)
=>căn 5x+1=\(\dfrac{27\sqrt{5}}{28\sqrt{5}-1}\)
=>5x+1=0,96
=>5x=-0,04
=>x=-0,04/5=-0,008
\(\sqrt{\dfrac{x+2}{4}}+\sqrt{25x+50}-2\sqrt{x+2}=14\) ; \(\sqrt{2x+3}=x\) ; \(\sqrt{25x^2+20x+4}=1\) ; \(\sqrt{\dfrac{x+1}{2x-1}}=2\) ; \(\dfrac{\sqrt{x-2}}{\sqrt{3x+1}}=6\)
Tìm x
1) ĐKXĐ: \(x\ge-2\)
\(pt\Leftrightarrow\dfrac{\sqrt{x+2}}{2}+5\sqrt{x+2}-2\sqrt{x+2}=14\)
\(\Leftrightarrow\dfrac{\sqrt{x+2}+6\sqrt{x+2}}{2}=14\Leftrightarrow7\sqrt{x+2}=28\)
\(\Leftrightarrow\sqrt{x+2}=4\Leftrightarrow x+2=16\Leftrightarrow x=14\left(tm\right)\)
2) ĐKXĐ: \(x\ge0\)
\(pt\Leftrightarrow2x+3=x^2\Leftrightarrow\left(x-3\right)\left(x+1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=3\left(tm\right)\\x=-1\left(ktm\right)\end{matrix}\right.\)
3) \(pt\Leftrightarrow\sqrt{\left(5x+2\right)^2}=1\Leftrightarrow\left|5x+2\right|=1\)
\(\Leftrightarrow\left[{}\begin{matrix}5x+2=1\\5x+2=-1\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}x=-\dfrac{1}{5}\\x=-\dfrac{3}{5}\end{matrix}\right.\)
4) ĐKXĐ: \(\left[{}\begin{matrix}\left\{{}\begin{matrix}x+1\ge0\\2x-1>0\end{matrix}\right.\\\left\{{}\begin{matrix}x+1\le0\\2x-1< 0\end{matrix}\right.\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}x>\dfrac{1}{2}\\x\le-1\end{matrix}\right.\)
\(pt\Leftrightarrow\dfrac{x+1}{2x-1}=4\Leftrightarrow x+1=8x-4\)
\(\Leftrightarrow7x=5\Leftrightarrow x=\dfrac{5}{7}\left(tm\right)\)
5) ĐKXĐ: \(x\ge2\)
\(pt\Leftrightarrow\dfrac{x-2}{3x+1}=36\)
\(\Leftrightarrow x-2=108x+36\Leftrightarrow107x=-38\Leftrightarrow x=-\dfrac{38}{107}\left(ktm\right)\)
Vậy \(S=\varnothing\)
Tính :
a)\(\dfrac{6x-3}{5x^2+x}.\dfrac{25x^2+10x+1}{1-8x^3}\)
b)\(\dfrac{3x^2-x}{x^2-1}.\dfrac{1-x^4}{\left(1-3x\right)^3}\)
c)\(\dfrac{x^4-xy^3}{2xy+y^2}:\dfrac{x^3+x^2y+xy^2}{2x+y}\)
d) \(\dfrac{5x^2-10xy+5y^2}{2x^2-2xy+2y^2}:\dfrac{8x-8y}{x^3+10y^3}\)
Thực hiện phép tính:
a) \(\dfrac{2x ^2-20x+50}{3x+3}.\dfrac{x^2-1}{4\left(x-5\right)^3}\)
b)\(\dfrac{x^{ }^2+x}{5x^2-10x+5}:\dfrac{3x+3}{5x-5}\)
Giải phương trình sau :
a,\(\dfrac{7-3x}{12}+\dfrac{5x+2}{7}=x+13\)
b,\(\dfrac{3\left(x+3\right)}{4}-\dfrac{1}{2}=\dfrac{5x+9}{7}-\dfrac{7x-9}{4}\)
c,\(\dfrac{2x+1}{3}-\dfrac{5x+2}{7}=x+3\)
d,\(\dfrac{2x-3}{3}-\dfrac{2x+3}{7}=\dfrac{4x+3}{5}-17\)
a: \(\Leftrightarrow7\left(7-3x\right)+12\left(5x+2\right)=84\left(x+13\right)\)
\(\Leftrightarrow49-21x+60x+24=84x+1092\)
\(\Leftrightarrow39x-84x=1092-73\)
=>-45x=1019
hay x=-1019/45
b: \(\Leftrightarrow21\left(x+3\right)-14=4\left(5x+9\right)-7\left(7x-9\right)\)
=>21x+63-14=20x+36-49x+63
=>21x+49=-29x+99
=>50x=50
hay x=1
c: \(\Leftrightarrow7\left(2x+1\right)-3\left(5x+2\right)=21x+63\)
=>14x+7-15x-6-21x-63=0
=>-22x-64=0
hay x=-32/11
d: \(\Leftrightarrow35\left(2x-3\right)-15\left(2x+3\right)=21\left(4x+3\right)-17\cdot105\)
=>70x-105-30x-45=84x+63-1785
=>40x-150-84x+1722=0
=>-44x+1572=0
hay x=393/11
a, msc 12.7=84
Chuyển vế về =0 rồi làm
b,msc 28
c,làm tương tự
a, \(\Rightarrow49-21x+60x+24=84x+1092\)
\(\Leftrightarrow-45x=1019\Leftrightarrow x=-\dfrac{1019}{45}\)
b, \(\Rightarrow21\left(x+3\right)-14=4\left(5x+9\right)-7\left(7x-9\right)\)
\(\Leftrightarrow21x+63-14=20x+36-49x+63\)
\(\Leftrightarrow50x=50\Leftrightarrow x=1\)
c, \(\Rightarrow14x+7-15x-6=21x+63\Leftrightarrow-22x=62\Leftrightarrow x=-\dfrac{31}{11}\)
d, \(\Rightarrow35\left(2x-3\right)-15\left(2x+3\right)=21\left(4x+3\right)-105.17\)
\(\Leftrightarrow70x-105-30x-45=84x+63-1785\)
\(\Leftrightarrow-44x=-1572\Leftrightarrow x=\dfrac{393}{11}\)
Giai các bpt sau
a,\(\dfrac{5x^2-3}{5}+\dfrac{3x-1}{4}< \dfrac{x\left(2x+3\right)}{2}-5\)
b,\(\dfrac{5x-2}{-3}\)\(-\dfrac{2x^2-x}{-2}>\dfrac{x\left(1-3x\right)}{-3}-\dfrac{5x}{-4}\)
a: \(\Leftrightarrow4\left(5x^2-3\right)+5\left(3x-1\right)< 10x\left(2x+3\right)-100\)
\(\Leftrightarrow20x^2-12x+15x-5< 20x^2+30x-100\)
=>3x-5<=30x-100
=>30x-100>3x-5
=>27x>95
hay x>95/27
b: \(\Leftrightarrow4\left(5x-2\right)-6\left(2x^2-x\right)< 4x\left(1-3x\right)-15x\)
\(\Leftrightarrow20x-8-12x^2+6x< 4x-12x^2-15x\)
=>26x-8<-11x
=>37x<8
hay x<8/37
Giải pt: \(\dfrac{3}{5x-1}+\dfrac{2}{3-5x}=\dfrac{4}{\left(1-5x\right)\left(x-3\right)}\)
\(\dfrac{5+96}{x^2-16}=\dfrac{2x—1}{x+4}-\dfrac{3x-1}{4-x}\)
a) Sửa đề: \(\dfrac{3}{5x-1}+\dfrac{2}{3-x}=\dfrac{4}{\left(1-5x\right)\left(x-3\right)}\)
ĐKXĐ: \(x\notin\left\{3;\dfrac{1}{5}\right\}\)
Ta có: \(\dfrac{3}{5x-1}+\dfrac{2}{3-x}=\dfrac{4}{\left(1-5x\right)\left(x-3\right)}\)
\(\Leftrightarrow\dfrac{3\left(3-x\right)}{\left(5x-1\right)\left(3-x\right)}+\dfrac{2\left(5x-1\right)}{\left(3-x\right)\left(5x-1\right)}=\dfrac{4}{\left(5x-1\right)\left(3-x\right)}\)
Suy ra: \(9-3x+10x-2=4\)
\(\Leftrightarrow7x+7=4\)
\(\Leftrightarrow7x=-3\)
hay \(x=-\dfrac{3}{7}\)
Vậy: \(S=\left\{-\dfrac{3}{7}\right\}\)
Tìm điều kiện xác định
\(A=\sqrt{x^2-5x+6}\)
\(B=\dfrac{x}{\sqrt{7x^2-8}}\)
\(C=\sqrt{-9x^2+6x-1}-\dfrac{1}{\sqrt{x^2+x+2}}\)
\(D=\sqrt{3-x^2}-\sqrt{\dfrac{2021}{3x+2}}\)
\(E=\sqrt{\dfrac{3x^2}{2x+1}-1}\)
\(F=\sqrt{25x^2-10x+1}+\dfrac{1}{1-5x}\)
a: ĐKXĐ: \(\left[{}\begin{matrix}x\ge3\\x\le2\end{matrix}\right.\)
b: ĐKXĐ: \(\left[{}\begin{matrix}x>\dfrac{2\sqrt{14}}{7}\\x< -\dfrac{2\sqrt{14}}{7}\end{matrix}\right.\)
c: ĐKXĐ: \(x=\dfrac{1}{3}\)
d: ĐKXĐ: \(-\dfrac{2}{3}< x\le\sqrt{3}\)