tìm số tự nhiên X nhỏ nhất biết X chia 5 thì dư 3, X chia 7 thì dư 5
Tìm số tự nhiên x nhỏ nhất sao cho x chia cho 5 thì dư 3, x chia cho 7 thì dư 4.
=>x=5m+3=7n+4 => x+17=5m+3+17=7n+4+17
=>x+17=5m+20=7n+21 => x+17=5(m+4)=7(n+3)
=>\(x+17\in B\left(5;7\right)\)
Mà x nhỏ nhất => x+17 nhỏ nhất => \(x+17=BCNN\left(5;7\right)=35\)
=>x=35-17=18
Vậy ..............
2. Chứng minh rằng với mọi số tự nhiên n thì 7n+10 và 5n+7 là hai số nguyên tố cùng nhau
3. Tìm x : a, x chia hết cho 4;7;8 và x nhỏ nhất . B, x chia hết cho 10,15 và x <100
5. Tìm số tự nhiên có 3 chữ số biết số đó khi chia cho 6 thì dư 5, chia cho 8 thì dư 7 chia cho 9 dư 8
2.Gọi UCLN của 7n+10 và 5n+7 là d 7n+10 chia hết cho d
=> 5(7n+10) chia hết cho d hay 35n+50 chia hết cho d 5n+7 chia hết cho d
=> 7(5n+7) chia hết cho d
hay 35n+49 chia hết cho d
(35n+50)-(35n+49) chia hết cho d
35n+50-35n-49 chia hết cho d
(35n-35n)+(50-49) chia hết cho d
0+1 chia hết cho d 1
chia hết cho d => d=1
Vì UCLN của 7n+10 và 5n+7 =1 =>7n+10 và 5n+7 là hai số nguyên tố cùng nhau
5.Gọi a là số tự nhiên cần tìm (99 < a < 1000)
Ta có a chia 25 dư 5 => a + 20 chia hết cho 25
a chia 28 dư 8 => a + 20 chia hết cho 28
a chia 35 dư 15 => a + 20 chia hết cho 35
=> a + 20 thuộc BC(25;28;35) = B(700) = {0;700;1400;...}
Mà 119 < (a + 20) < 1020
Nên a + 20 = 700
=> a = 680
Vậy số tự nhiên cần tìm là 680
Bài 1: Tìm số tự nhiên x lớn nhất sao cho: 13 ; 15 ; 61 chia x đều dư 1.
Bài 2: Tìm số tự nhiên x nhỏ nhất biết khi chia x cho các số 5; 7; 11 thì được các số dư lần lượt là 3; 4; 6.
Giải bài toán sau : a) Tìm x biết: |x-3|=2.x+4
b) Tìm số nguyên n để phân số M=2n-7/n-5 có giá trị là số nguyên
c) Tìm số tự nhiên a nhỏ nhất sao cho: a chia cho 5 thì dư 3, a chia cho 7 thì dư 4
b) Để M là số nguyên thì \(2n-7⋮n-5\)
\(\Leftrightarrow2n-10+3⋮n-5\)
mà \(2n-10⋮n-5\)
nên \(3⋮n-5\)
\(\Leftrightarrow n-5\inƯ\left(3\right)\)
\(\Leftrightarrow n-5\in\left\{1;-1;3;-3\right\}\)
hay \(n\in\left\{6;4;8;2\right\}\)
Vậy: \(n\in\left\{6;4;8;2\right\}\)
a) Ta có: \(\left|x-3\right|=2x+4\)
\(\Leftrightarrow\left[{}\begin{matrix}x-3=2x+4\left(x\ge3\right)\\x-3=-2x-4\left(x< 3\right)\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x-2x=4+3\\x+2x=-4+3\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}-x=7\\3x=-1\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-7\left(loại\right)\\x=-\dfrac{1}{3}\left(nhận\right)\end{matrix}\right.\)
Vậy: \(x=-\dfrac{1}{3}\)
Tìm số tự nhiên x nhỏ nhất biết x chia 3 dư 1, chia cho 5 dư 3, chia cho 7 dư 5
Vì x chia cho 3 có số dư là 1 nên (x+2) ⋮ 3
Vì x chia cho 5 có số dư là 3 nên (x+2) ⋮ 5
Vì x chia cho 7 có số dư là 5 nên (x+2) ⋮ 7
Vì x là số tự nhiên nhỏ nhất => (x+2) là bội chung nhỏ nhất của 3 ;5 ;7
Ta có: BCNN(3,5,7) = 105 => x + 2 = 105 => x = 103
Vậy x = 103 thỏa mãn
Tìm số tự nhiên x nhỏ nhất biết x chia 3 dư 1, chia cho 5 dư 3, chia cho 7 dư 5
Tìm số tự nhiên dương x nhỏ nhất sao cho x chia cho 5 thì dư 1 và x chia cho 7 thì dư 2
Theo đề, ta có : x=5a+1=7b+2
Ta có : 5a=7b+2-1=7b+1=5b+2b+1 =>2b+1 chia hết cho 5
Vì x nhỏ nhất nên ta chọn giá trị nhỏ nhất, ta được b=2
Thay b=2, ta được: x=7.2+2=16
Vậy : x=16
1. Tìm số tự nhiên nhỏ nhất biết rằng số đó khi chia cho 3, cho 4, cho 5 đều dư 2, còn chia 7 dư 3.
2. Tìm x, y nguyên biết x+y+xy=40.
3. Khi chia một số tự nhiên a chia cho 4 ta được số dư là 3 còn khi chia a cho 9 thì được số dư là 5. Tìm số dư trong phép chia a cho 36.
2, TA có:
x + y + xy = 40
=> x(y + 1) + y + 1 = 41
=> (x + 1)(y + 1) = 41
=> x + 1 thuộc Ư(41) = {1; 41}
Xét từng trường hợp rồi thay vào tìm y
Có lẽ các bạn thấy hơi dài nhưng các bạn có thể làm 1 trong 3 câu cũng được. Nhưng đừng làm sai nhé! Hihihi...
1, Gọi số cần tìm là A
A chia 3, 4, 5 dư 2 => A - 2 chia hết cho 3, 4 ,5
=> A - 2 thuộc ƯC(3, 4, 5) = {60, 120, 180,...}
Mà A chia 7 dư 3 => A - 3 chia hết cho 7
=> A = 360
tìm số tự nhiên a nhỏ nhất biết chia 5 thì dư 3, chia 7 thì dư 5
gọi số đó là : x
Vì x : 5 dư 3
---> x tận cùng là : 8 hoặc 3
x : 7 dư 5
---> ( x + 5 ) chia hết cho 7
+, nếu x tận cùng = 8
--> x + 5 tận cùng = 1
số bé nhất tận cùng = 1 chia hết cho 7 là : 21
+, nếu x tận cùng = 3
---> x + 5 tận cùng = 8
số bé nhất tận cùng = 8 chia hết cho 7 là : 28
vì 21 < 28
---> số cần tìm là : ...
Thay 28 và 54 vào số tự nhiên a nhỏ nhất ,ta được:
28 : 5 = 5 và dư 354 : 7 = 7 và dư 5
Trả lời:
a chia 5 dư 3 ; a chia 7 dư 5
=> a + 2 chia hết cho 5;7 và a nhỏ nhất
=> a + 2 = BCNN(5,7) = 5.7 = 35
Vậy a = 35 - 2 = 33