giúp mìn với 1/1.2 +1/2.3+1/3.4+1/4.5+....+1/[x-1].x+1/x.[x+1]
Tìm x , biết :
1/1.2 + 1/2.3 + 1/3.4 + 1/4.5 + ....... + 1/x.(x + 1) = 2018/2019
Giúp em nha !
1/1-1/2+1.2-1/3+1/3-1/4+..+1/x-1/x+1=2018/2019
1-1/x+1=2018/2019
1-2018/2019=1/x+1
1/2019=1/x+1
=>x+1=2019
=>x=2018
vậy...
\(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{x\left(x+1\right)}=\frac{2018}{2019}.\)
\(\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{x}-\frac{1}{x+1}=\frac{2018}{2019}.\)
\(\frac{1}{1}-\frac{1}{x+1}=\frac{2018}{2019}\)
\(\frac{1}{1}-\frac{2018}{2019}=\frac{1}{x+1}\)
\(\frac{1}{2019}=\frac{1}{x+1}\)
=> \(2019=x+1\)
\(x+1=2019\)
\(x=2019-1\)
\(x=2018\)
Vậy x = 2018
a, 1313/1212:x=1/1.2+1/2.3+1/3.4+1/4.5+1/5.6
\(\frac{1313}{1212}:x=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+\)\(\frac{1}{5.6}\)
\(\Leftrightarrow\frac{13}{12}:x=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}\)
\(\Leftrightarrow\frac{13}{12}:x=1-\frac{1}{6}\)
\(\Leftrightarrow\frac{13}{12}:x=\frac{5}{6}\)
\(\Leftrightarrow x=\frac{13}{12}:\frac{5}{6}\)
\(\Leftrightarrow x=\frac{13}{10}\)
Vậy \(x=\frac{13}{10}\)
~~~~~Hok tốt ~~~~~
a,\(\frac{1313}{1212}\div x=\frac{1}{1\times2}+\frac{1}{2\times3}+\frac{1}{3\times4}+\frac{1}{4\times5}+\frac{1}{5\times6}\)
\(\frac{13}{12}\div x=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}\)
\(\frac{13}{12}\div x=1-\frac{1}{6}\)
\(\frac{13}{12}\div x=\frac{5}{6}\)
\(x=\frac{13}{12}\div\frac{5}{6}\)
\(x=\frac{13}{12}\times\frac{6}{5}\)
\(x=\frac{13}{10}\)
Chúc bạn hok tốt !
\(\frac{1313}{1212}:x=\frac{1}{1x2}+\frac{1}{2x3}+...+\frac{1}{5x6}\)
\(\frac{1313}{1212}:\frac{101}{101}=\frac{13}{12}:x=\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{5}-\frac{1}{6}\)
\(\frac{13}{12}:x=1-\frac{1}{6}\)
\(\frac{13}{12}:x=\frac{5}{6}\)
\(x=\frac{13}{12}:\frac{5}{6}\)
\(x=\frac{78}{60}=\frac{13}{10}\)
a, 1313/1212:x=1/1.2+1/2.3+1/3.4+1/4.5+1/5.6
\(\frac{1313}{1212}:x=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+\)\(\frac{1}{5.6}\)
\(\Leftrightarrow\frac{13}{12}:x=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}\)
\(\Leftrightarrow\frac{13}{12}:x=1-\frac{1}{6}\)
\(\Leftrightarrow\frac{13}{12}:x=\frac{5}{6}\)
\(\Leftrightarrow x=\frac{13}{12}:\frac{5}{6}\)
\(\Leftrightarrow x=\frac{13}{10}\)
Hok tốt
\(x-\frac{1}{1.2}-\frac{1}{2.3}-\frac{1}{3.4}=\frac{1}{4.5}\)
\(x-\frac{1}{1.2}-\frac{1}{2.3}-\frac{1}{3.4}=\frac{1}{4.5}\)
\(x-\frac{1}{1.2}-\frac{1}{2.3}-\frac{1}{3.4}-\frac{1}{4.5}=0\)
\(x-\left(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}\right)=0\)
\(x-\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}\right)=0\)
\(x-\left(1-\frac{1}{5}\right)=0\)
\(x-\frac{4}{5}=0\)
\(x=\frac{4}{5}\)
\(x-\frac{1}{1.2}-\frac{1}{2.3}-\frac{1}{3.4}=\frac{1}{4.5}\)
\(x-\left(1-\frac{1}{2}\right)-\left(\frac{1}{2}-\frac{1}{3}\right)-\left(\frac{1}{3}-\frac{1}{4}\right)=\frac{1}{4}-\frac{1}{5}\)
\(x-1+\frac{1}{2}-\frac{1}{2}+\frac{1}{3}-\frac{1}{3}+\frac{1}{4}-\frac{1}{4}=\frac{-1}{5}\)
\(x-1=-\frac{1}{5}\)
\(x=\frac{4}{5}\)
\(x-\frac{1}{1.2}-\frac{1}{2.3}-\frac{1}{3.4}=\frac{1}{4.5}\)
\(\Rightarrow x-\text{}\text{}\frac{1}{1.2}-\frac{1}{2.3}-\frac{1}{3.4}-\frac{1}{4.5}=0\)
\(\Rightarrow x-\left(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}\right)=0\)
\(\Rightarrow x-\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}\right)=0\)
\(\Rightarrow x-\left(1-\frac{1}{5}\right)=0\)
\(\Rightarrow x-\frac{4}{5}=0\)
\(\Rightarrow x=\frac{4}{5}\)
Vậy \(x=\frac{4}{5}\)
_Chúc bạn học tốt_
tìm x biết \(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{x.\left(x+1\right)}=\frac{2019}{2020}\)
\(\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+\frac{1}{4\cdot5}+...+\frac{1}{x(x+1)}=\frac{2019}{2020}\)
\(\Rightarrow1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{x}-\frac{1}{x+1}=\frac{2019}{2020}\)
\(\Rightarrow1-\frac{1}{x+1}=\frac{2019}{2020}\)
\(\Rightarrow\frac{1}{x+1}=1-\frac{2019}{2020}\)
\(\Rightarrow\frac{1}{x+1}=\frac{1}{2020}\)
\(\Rightarrow x+1=2020\Leftrightarrow x=2019\)
Vậy x = 2019
(1- 2/2.3) x (1- 2/3.4) x (1- 2/4.5) x...x (1- 2/98.99)
Giúp mình với
tìm x biết : \(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+.....+\frac{1}{x\left(x+1\right)}=\frac{17}{18}\)
= 1-1/x+1 = 17/18
=> 1/x+1 = 1-17/18= 1/18
=> x+1 = 18 => x=17
ta có 1/1.2+1/2.3+1/3.4+1/4.5+...+1/x.(x+1)=17/18
1-1/2+1/2-1/3+1/3-1/4+1/4-1/5+...+1/x-1/x+1=17/18
1-1/x+1=17/18
1/x+1=1-17/18
1/x+1=1/18
suy ra: x+1=18
x=18-1
x=17
1+1/1.2+1/2.3+1/3.4+1/4.5+...+1/2006.2007+1/2007.2008
giúp mình với
\(1+\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+...+\frac{1}{2016\cdot2017}+\frac{1}{2017\cdot2018}\)
\(=1+1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}+...+\frac{1}{2016}-\frac{1}{2017}+\frac{1}{2017}-\frac{1}{2018}\)
\(=2-\frac{1}{2018}\)
\(=\frac{1009}{2018}-\frac{1}{2018}\)
\(=\frac{1008}{2018}=\)TỰ RÚT GỌN NHA
\(1+\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{2006.2007}+\frac{1}{2007.2008}\)
\(=1+1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{2007}-\frac{1}{2008}\)
\(=2-\frac{2007}{2008}\)
\(=\frac{2009}{2008}\)
~Học tốt~
Xin lỗi, tớ viết sai đề
Làm tiếp khúc sai:
\(=2-\frac{1}{2008}\)
\(=\frac{4016}{2008}-\frac{1}{2008}\)
\(=\frac{4015}{2008}\)
~Học tốt~
tìm x biết : \(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+.....+\frac{1}{x\left(x+1\right)}=\frac{17}{18}\)
=> 1 - 1/2 + 1/2 - 1/3 + 1/3 - 1/4 + ........ + 1 /x - 1/x + 1 = 17 /18
=> 1 - 1/x+1 = 17/18
=> 1/x+1 = 1/18
=> x + 1 = 18
=> x = 17 (tm)
Vậy x = 17 nha!
Ai mk mk lại !!
1/1.2 + 1/2.3 + 1/3.4 +......+ 1/x(x+1) = 17/18
=> 1- 1/x+1 = 17/18
=> 1/x +1 = 1-17/18
=> 1/x+1 = 1/18
=> x= 17
ta có: 1/1.2+1/2.3+1/3.4+1/4.5+...+1/x(x+1)=17/18
1-1/2+1/2-1/3+1/3+1/4+1/4-1/5+...+1/x-1/x+1=17/18
1-1/x+1=17/18
1/x+1=1-17/18
1/x+1=1/18
suy ra: x+1=18
x=18-1
x=17