Cho :
a,A= \(\frac{1}{1^2}\) + \(\frac{1}{2^2}\) + \(\frac{1}{3^2}\) + \(\frac{1}{4^2}\) + . . . + \(\frac{1}{50^2}\) . CMR : A < 2
b,B= 2 + 2 + 2 + . . . + 2 . CMR : B \(⋮\) 21
1.\(\left\{{}\begin{matrix}a,b,c>0\\ab+bc+ca=3\end{matrix}\right.\) Cmr: \(\frac{1}{a^2+1}+\frac{1}{b^2+1}+\frac{1}{c^2+1}\ge\frac{3}{2}\)
2.\(a,b,c>0\). Cmr: \(\frac{ab^2}{a^2+2b^2+c^2}+\frac{bc^2}{b^2+2c^2+a^2}+\frac{ca^2}{c^2+2a^2+b^2}\le\frac{a+b+c}{4}\)
3. \(a,b,c>0\). Cmr: \(\frac{ab}{a+3b+2c}+\frac{bc}{b+3c+2a}+\frac{ca}{c+3a+2b}\le\frac{a+b+c}{6}\)
1. Vai trò a, b, c như nhau. Không mất tính tổng quát. Giả sử \(a\ge b\ge0\)
Mà \(ab+bc+ca=3\). Do đó \(ab\ge1\)
Ta cần chứng minh rằng \(\frac{1}{1+a^2}+\frac{1}{1+b^2}\ge\frac{2}{1+ab}\left(1\right)\)
Và \(\frac{2}{1+ab}+\frac{1}{1+c^2}\ge\frac{3}{2}\left(2\right)\)
Thật vậy: \(\left(1\right)\Leftrightarrow\frac{1}{1+a^2}-\frac{1}{1+ab}+\frac{1}{1+b^2}-\frac{1}{1+ab}\ge0\\ \Leftrightarrow\left(ab-a^2\right)\left(1+b^2\right)+\left(ab-b^2\right)\left(1+a^2\right)\ge0\\ \Leftrightarrow\left(a-b\right)\left[-a\left(1+b^2\right)+b\left(1+a^2\right)\right]\ge0\\ \Leftrightarrow\left(a-b\right)^2\left(ab-1\right)\ge0\left(BĐT:đúng\right)\)
\(\left(2\right)\Leftrightarrow c^2+3-ab\ge3abc^2\\ \Leftrightarrow c^2+ca+bc\ge3abc^2\Leftrightarrow a+b+c\ge3abc\)
BĐT đúng, vì \(\left(a+b+c\right)^2>3\left(ab+bc+ca\right)=q\)
và \(ab+bc+ca\ge3\sqrt[3]{\left(abc\right)^2}\)
Nên \(a+b+c\ge3\ge3abc\)
Từ (1) và (2) ta có \(\frac{1}{1+a^2}+\frac{1}{1+b^2}+\frac{1}{1+c^2}\ge\frac{3}{2}\)
Dấu ''='' xảy ra \(\Leftrightarrow a=b=c=1\)
Áp dụng BĐT Cauchy dạng \(\frac{9}{x+y+z}\le\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\), ta được
\(\frac{9}{a+3b+2c}=\frac{1}{a+c+b+c+2b}\le\frac{1}{9}\left(\frac{1}{a+c}+\frac{1}{b+c}+\frac{1}{2b}\right)\)
Do đó ta được
\(\frac{ab}{a+3b+2c}\le\frac{ab}{9}\left(\frac{1}{a+c}+\frac{1}{b+c}+\frac{1}{2b}\right)=\frac{1}{9}\left(\frac{ab}{a+c}+\frac{ab}{b+c}+\frac{a}{2}\right)\)
Hoàn toàn tương tự ta được
\(\frac{bc}{2a+b+3c}\le\frac{1}{9}\left(\frac{bc}{a+b}+\frac{bc}{b+c}+\frac{b}{2}\right);\frac{ac}{3a+2b+c}\le\frac{1}{9}\left(\frac{ac}{a+b}+\frac{ac}{b+c}+\frac{c}{2}\right)\)
Cộng theo vế các BĐT trên ta được
\(\frac{ab}{a+3b+2c}+\frac{bc}{b+3c+2a}+\frac{ca}{c+3a+2b}\le\frac{1}{9}\left(\frac{ac+bc}{a+b}+\frac{ab+ac}{b+c}+\frac{bc+ab}{a+c}+\frac{a+b+c}{2}\right)=\frac{a+b+c}{6}\)Vậy BĐT đc CM
ĐẲng thức xảy ra khi và chỉ khi a = b = c >0
Bài 2:
Áp dụng BĐT AM-GM:
\(a^2+2b^2+c^2=(a^2+b^2)+(a^2+c^2)\geq 2\sqrt{(a^2+b^2)(a^2+c^2)}\geq 2\sqrt{\frac{(a+b)^2}{2}.\frac{(a+c)^2}{2}}=(a+b)(a+c)\)
\(\Rightarrow \frac{ab^2}{a^2+2b^2+c^2}\leq \frac{ab^2}{(a+b)(a+c)}\)
Hoàn toàn tương tự với các phân thức còn lại:
\(\Rightarrow \text{VT}\leq \sum \frac{ab^2}{(a+b)(a+c)}=\frac{a^2b^2+b^2c^2+c^2a^2+abc(a+b+c)}{(a+b)(b+c)(c+a)}\)
Ta cần CM: \(\frac{a^2b^2+b^2c^2+c^2a^2+abc(a+b+c)}{(a+b)(b+c)(c+a)}\leq \frac{a+b+c}{4}\)
\(\Leftrightarrow 4(a^2b^2+b^2c^2+c^2a^2)+4abc(a+b+c)\leq (a+b+c)(a+b)(b+c)(c+a)\)
\(\Leftrightarrow 4(a^2b^2+b^2c^2+c^2a^2)+4abc(a+b+c)\leq (a+b+c)(a+b)(b+c)(c+a)\)
\(\Leftrightarrow 4(a^2b^2+b^2c^2+c^2a^2)+4abc(a+b+c)\leq (a+b+c)[(a+b+c)(ab+bc+ac)-abc]\)
\(\Leftrightarrow 2(a^2b^2+b^2c^2+c^2a^2)\leq (a^3b+ab^3)+(bc^3+b^3c)+(ca^3+c^3a)\)
(dễ thấy luôn đúng do theo BĐT AM-GM)
Do đó ta có đpcm.
Dấu "=" xảy ra khi $a=b=c$
Bài 1 : Cho A = \(\frac{1}{^{1^2}}+\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{50^2}\) . CMR : A < 2
Bài 2 : Cho B = \(2^1+2^2+2^3+2^4+...+2^{30}\). CMR : B chia hết cho 21
Bai 2 :
Ta co :
B = [ 2^1 + 2^2 + 2^3 + 2^4 + 2^5 = 2^6 ] + .... + [ 2^25 + 2^26 + 2^27 + 2^28 +2^29 +2^30 ]
= 2[1 + 2 + 2^2 + 2^3 + 2^4 + 2^5 ] +.....+ 2^25[ 1 + 2 + 2^2 + 2^3 + 2^4 + 2^5 ]
= 2 . 63 +.... + 2^25 . 63
= 63 [2 + ..... + 2^25 ] chia het cho 21
Vay B chia het cho 21
Bai 1 :
Ta co :
A = 1/1 + 1/2^2 + 1/3^3 + 1/4^4 + .... + 1?50^2 < 1/1 + 1/1.2 + 1/2.3 + ..... + 1/49.50
=>1 + 1/1 - 1/2 +1/2 -1/3 + .... +1/449 - 1/50
=> 1 + 1/1 - 1/50
=> 1 + 49/50
=> 99/50 < 2
Vay 1 < 2
bai 1 minh ket luan nham
A < 2
Cho a,b,c>0 thỏa mãn a+2b+3c=1
CMR: \(\frac{2ab}{a^2+4b^2}+\frac{6bc}{4b^2+9c^2}+\frac{3ac}{9c^2+a^2}+\frac{1}{4}\left(\frac{1}{a}+\frac{1}{2b}+\frac{1}{3c}\right)\ge\frac{15}{4}\)
1) Cho a,b,c>0 tm a+b+c=3. Cmr \(\frac{1}{2+a^2+b^2}+\frac{1}{2+b^2+c^2}+\frac{1}{2+c^2+a^2}\le\frac{3}{4}\)
2) Cho a,b,c>0 tm \(a^2+b^2+c^2\le abc\).Cmr \(\frac{a}{a^2+bc}+\frac{b}{b^2+ca}+\frac{c}{c^2+ab}\le\frac{1}{2}\)
3) Cho a,b,c>0 tm \(\sqrt{a}+\sqrt{b}+\sqrt{c}=1\).Cmr \(\sqrt{\frac{ab}{a+b+2c}}+\sqrt{\frac{bc}{b+c+2a}}+\sqrt{\frac{ca}{c+a+2b}}\le\frac{1}{2}\)
Giúp mình mới nhé các bạn. Mình đang cần gấp
Cho a,b,c >0 thỏa mãn a.b.c=1. CMR
\(\frac{1}{a^2+2b^2+3}+\frac{1}{b^2+2c^2+3}+\frac{1}{c^2+2a^2+3}\le\frac{1}{2}\)
Cô-si mẫu suy ra:
\(A\le\frac{1}{2}\left(\frac{1}{ab+a+1}+\frac{1}{bc+b+1}+\frac{1}{ca+c+1}\right)\)
Dễ cm biểu thức trong ngoặc = 1.
Suy ra A <=1/2
Dấu = khi a=b=c=1
Cho a,b,c>0 CMR:\(\frac{a}{3a^2+2b^2+c^2}+\frac{b}{3b^2+2c^2+a^2}+\frac{c}{3c^2+2a^2+b^2}\le\frac{1}{6}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\)
cho a, b, c là 3 số thực dương. cmr \(\frac{a^2}{b^2c}+\frac{b^2}{c^2a}+\frac{c^2}{a^2b}\ge\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\)
Lời giải:
\(\text{BĐT}\Leftrightarrow \frac{\frac{a^3}{b}+\frac{b^3}{c}+\frac{c^3}{a}}{abc}\geq\frac{ab+bc+ac}{abc}\)
\(\Leftrightarrow \frac{a^3}{b}+\frac{b^3}{c}+\frac{c^3}{a}\geq ab+bc+ac\) \((\star)\)
Điều này hiển nhiên đúng vì theo Cauchy-SChwarz kết hợp AM-GM:
\(\text{VT}_{\star}=\frac{a^4}{ab}+\frac{b^4}{bc}+\frac{c^4}{ac}\geq \frac{(a^2+b^2+c^2)^2}{ab+bc+ac}\geq ab+bc+ac\)
Do đó ta có đpcm
Dấu bằng xảy ra khi $a=b=c$
cho a,b,c >0
CMR:\(\frac{a}{3a^2+2b^2+c^2}+\frac{b}{3b^2+2c^2+a^2}+\frac{c}{3c^2+2a^2+b^2}\le\frac{1}{6}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\)
cần giúp
1.Cho a,b,c>0. CMR:\(\frac{a^5}{b^5}+\frac{b^5}{c^5}+\frac{c^5}{a^5}\ge a^3+b^3+c^3\)
2.Cho a,b,c>0. CMR: \(\frac{a^3}{a+2b}+\frac{b^3}{b+2c}+\frac{c^3}{c+2a}\ge\frac{1}{3}\left(a^2+b^2+c^2\right)\)
3.Cho a,b,c thỏa mãn a+b+c=3. CMR: \(\frac{a}{b^2c+1}+\frac{b}{c^2a+1}+\frac{c}{a^2b+1}\ge2\)
a/ BĐT sai, cho \(a=b=c=2\) là thấy
b/ \(VT=\frac{a^4}{a^2+2ab}+\frac{b^4}{b^2+2bc}+\frac{c^4}{c^2+2ac}\ge\frac{\left(a^2+b^2+c^2\right)^2}{\left(a+b+c\right)^2}=\frac{\left(a^2+b^2+c^2\right)\left(a^2+b^2+c^2\right)}{\left(a+b+c\right)^2}\)
\(VT\ge\frac{\left(a^2+b^2+c^2\right)\left(a+b+c\right)^2}{3\left(a+b+c\right)^2}=\frac{1}{3}\left(a^2+b^2+c^2\right)\)
Dấu "=" xảy ra khi \(a=b=c\)
c/ Tiếp tục sai nữa, vế phải là \(\frac{3}{2}\) chứ ko phải \(2\), và hy vọng rằng a;b;c dương
\(VT=\frac{a^2}{abc.b+a}+\frac{b^2}{abc.c+b}+\frac{c^2}{abc.a+c}\ge\frac{\left(a+b+c\right)^2}{abc\left(a+b+c\right)+a+b+c}\)
\(VT\ge\frac{9}{3abc+3}\ge\frac{9}{\frac{3\left(a+b+c\right)^3}{27}+3}=\frac{9}{\frac{3.3^3}{27}+3}=\frac{9}{6}=\frac{3}{2}\)
Dấu "=" xảy ra khi \(a=b=c=1\)
Ta có:
\(a^3+b^3+b^3\ge3ab^2\) ; \(b^3+c^3+c^3\ge3bc^2\) ; \(c^3+a^3+a^3\ge3ca^2\)
Cộng vế với vế \(\Rightarrow a^3+b^3+c^3\ge ab^2+bc^2+ca^2\)
\(\frac{a^5}{b^2}+\frac{b^5}{c^2}+\frac{c^5}{a^2}=\frac{a^6}{ab^2}+\frac{b^6}{bc^2}+\frac{c^6}{ca^2}\ge\frac{\left(a^3+b^3+c^3\right)^2}{ab^2+bc^2+ca^2}\ge\frac{\left(a^3+b^3+c^3\right)^2}{a^3+b^3+c^3}=a^3+b^3+c^3\)