Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Lê Nguyên Lâm
Xem chi tiết

A = 2(2x + 3)2 + 5

vì (2x + 3)2 ≥ 0 ∀ x ⇒ 2(2x +3)2 + 5 ≥ 5 

A(min) = 5 ⇒ x = - \(\dfrac{3}{2}\)

Tô Xuân Khoa
22 tháng 12 2023 lúc 20:58

Tìm GTNN của biểu thức (2x+5)4+3

Tô Xuân Khoa
22 tháng 12 2023 lúc 21:06

mọi ng giúp tôi với tôi đang cần gấp

 

Ngô Quang Đạt 1
Xem chi tiết
Nguyễn Hải Hà
Xem chi tiết
Nguyễn Lê Phước Thịnh
17 tháng 8 2021 lúc 14:06

c: Ta có: \(\left(x+1\right)^2\ge0\forall x\)

\(\left(y-\dfrac{1}{3}\right)^2\ge0\forall y\)

Do đó: \(\left(x+1\right)^2+\left(y-\dfrac{1}{3}\right)^2\ge0\forall x,y\)

\(\Leftrightarrow\left(x+1\right)^2+\left(y-\dfrac{1}{3}\right)^2-10\ge-10\forall x,y\)

Dấu '=' xảy ra khi x=-1 và \(y=\dfrac{1}{3}\)

Hồng Phúc Phạm
Xem chi tiết
Chibi
5 tháng 4 2017 lúc 15:52

a. (x+2)2 >= 0

(y-1/5)2 >= 0

=> MinC = -10 khi x = -2, y = 1/5

b. (2x-3)2 + 5 >= 5

D đạt max khi mẫu đạt min (Mẫu > 0)

=> MaxD = 4/5 khi x = 3/2

Nii-chan
Xem chi tiết
dao xuan tung
Xem chi tiết
Thy Châu Nghiêm
Xem chi tiết
Nguyễn Lê Phước Thịnh
11 tháng 7 2023 lúc 23:14

a: (2x-3)^2>=0

=>-(2x-3)^2<=0

=>D<=-3

Dấu = xảy ra khi x=3/2

b: (2x-5)^2>=0

(y+1/2)^2>=0

=>(2x-5)^2+(y+1/2)^2>=0

=>D>=2022

Dấu = xảy ra khi x=5/2 và y=-1/2

Nguyễn Mai
Xem chi tiết
Thắng Nguyễn
1 tháng 12 2016 lúc 17:17

1)Áp dụng BĐT \(\left|a\right|+\left|b\right|\ge\left|a+b\right|\) ta có:

\(\left|y-5\right|+\left|y+2012\right|\ge\left|y-5+2012+y\right|=2007\)

Dấu "=" khi \(-2012\le x\le5\)

Vậy MinA=2007 khi \(-2012\le x\le5\)

2)Ta thấy:\(\left|2x-3\right|\ge0\)

\(\Rightarrow-\left|2x-3\right|\le0\)

\(\Rightarrow-5-\left|2x-3\right|\le-5\)

Dấu "=" khi \(x=\frac{3}{2}\)

Vậy MaxN=-5 khi \(x=\frac{3}{2}\)

marie
Xem chi tiết
luuthianhhuyen
18 tháng 11 2018 lúc 11:58

\(A=x^2-6x+10\)

\(\Leftrightarrow A=x^2-2\cdot x\cdot3+3^2-9+10\)

\(\Leftrightarrow A=\left(x-3\right)^2+1\ge1\)     \(\forall x\in z\)

\(\Leftrightarrow A_{min}=1khix=3\)

\(B=3x^2-12x+1\)

\(\Leftrightarrow B=\left(\sqrt{3}x\right)^2-2\cdot\sqrt{3}x\cdot2\sqrt{3}+\left(2\sqrt{3}\right)^2-12+1\)

\(\Leftrightarrow B=\left(\sqrt{3}x-2\sqrt{3}\right)^2-11\ge-11\)    \(\forall x\in z\)

\(\Leftrightarrow B_{min}=-11khix=2\)