Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Thị Ngọc Mai
Xem chi tiết
coolkid
27 tháng 2 2020 lúc 22:14

\(M=x+y+z+\frac{3}{x}+\frac{9}{2y}+\frac{4}{z}\)

\(=\left(\frac{3}{x}+\frac{3x}{4}\right)+\left(\frac{9}{2y}+\frac{y}{2}\right)+\left(\frac{4}{z}+\frac{z}{4}\right)+\left(\frac{x}{4}+\frac{y}{2}+\frac{3z}{4}\right)\)

\(\ge13\)

Dấu "=" xảy ra tại x=2;y=3;z=4

Khách vãng lai đã xóa
coolkid
27 tháng 2 2020 lúc 22:11

Để ý điểm rơi mà làm bạn :)

Khách vãng lai đã xóa
Không Tên
28 tháng 2 2020 lúc 10:17

Quan trọng lại việc tìm điểm rơi như thế nào?

Another Way:

\(M=\frac{3yz\left(x-2\right)^2+2zx\left(y-3\right)^2+xy\left(z-4\right)^2}{4xyz}+13\ge13\)

Khách vãng lai đã xóa
Nguyễn Thị Thu Hằng
Xem chi tiết
NguyenNgocAnh_71
Xem chi tiết
Hoàng Phúc
3 tháng 12 2015 lúc 15:30

x:y:z=5:4:3=>x/5=y/4=z/3

\(\frac{x+2y-3z}{5+4.2-3.3}=\frac{x-2y+3z}{5-4.2+3.3}\Leftrightarrow\frac{x+2y-3z}{5+8-9}=\frac{x-2y+3z}{5-8+9}\)

\(\frac{x+2y-3z}{4}=\frac{x-2y+3z}{6}\Leftrightarrow\frac{x+2y-3z}{x-2y+3z}=\frac{4}{6}=\frac{2}{3}\)

\(\Rightarrow P=\frac{x+2y-3z}{x-2y+3z}+\frac{1}{3}=\frac{2}{3}+\frac{1}{3}=\frac{3}{3}=1\)

vay P=1

nhớ tick

Giang Hồ Đại Ca
12 tháng 10 2016 lúc 10:29

Haizz....

Trần Nhật Anh
Xem chi tiết
Hà My Trần
Xem chi tiết
o0o I am a studious pers...
Xem chi tiết
Eihwaz
22 tháng 5 2017 lúc 22:03

áp dụng BĐT Cauchy ta có

\(\frac{x^3}{y+2z}+\frac{y+2z}{9}+\frac{1}{3}>=3\sqrt[3]{\frac{x^3}{y+2z}.\frac{\left(y+2z\right)}{9}.\frac{1}{3}}=x\)

\(=>\frac{x^3}{y+2z}>=x-\frac{y+2z}{9}-\frac{1}{3}\)

Tương tự \(\frac{y^3}{z+2x}>=y-\frac{z+2x}{9}-\frac{1}{3}\),\(\frac{z^3}{x+2y}>=z-\frac{x+2y}{9}-\frac{1}{3}\)

\(=>P>=\left(x+y+z\right)-\frac{3\left(x+y+z\right)}{9}-\left(\frac{1}{3}+\frac{1}{3}+\frac{1}{3}\right)\)

Mà x+y+z=3

\(=>P>=3-1-1=1\)

=>Min P=1 

Dấu "=" xảy ra khi x=y=z=1

s2 Lắc Lư  s2
22 tháng 5 2017 lúc 22:07

bạn đăng bđt đi CTV,,,,mik lm vs

Lầy Văn Lội
22 tháng 5 2017 lúc 22:08

một cách khác khá hay nhưng dài hơn:

\(P=\frac{x^4}{xy+2xz}+\frac{y^4}{yz+2xy}+\frac{z^4}{xz+2yz}\ge\frac{\left(x^2+y^2+z^2\right)^2}{3\left(xy+yz+xz\right)}\ge\frac{x^2+y^2+z^2}{3}\ge\frac{\frac{1}{3}\left(x+y+z\right)^2}{3}=1\)

Mai Anh Pen Tapper
Xem chi tiết
soyeon_Tiểubàng giải
28 tháng 10 2016 lúc 18:53

Cách 1: Đặt \(\frac{x}{2}=\frac{y}{3}=\frac{z}{4}=k\left(k\ne0\right)\Rightarrow\begin{cases}x=2.k\\y=3.k\\z=4.k\end{cases}\)

Ta có: \(A=\frac{x+2y+3z}{3x+2y+z}=\frac{2.k+2.3.k+3.4.k}{3.2.k+2.3.k+4.k}=\frac{2.k+6.k+12.k}{6.k+6.k+4.k}=\frac{20.k}{16.k}=\frac{5}{4}\)

Cách 2: Ta có: \(\frac{x}{2}=\frac{y}{3}=\frac{z}{4}=\frac{2y}{6}=\frac{3z}{12}=\frac{3x}{6}\)

Áp dụng tính chất của dãy tỉ số = nhau ta có:

\(\frac{x}{2}=\frac{y}{3}=\frac{z}{4}=\frac{2y}{6}=\frac{3z}{12}=\frac{x+2y+3z}{2+6+12}=\frac{x+2y+3z}{20}\left(1\right)\)

\(\frac{x}{2}=\frac{y}{3}=\frac{z}{4}=\frac{3x}{6}=\frac{2y}{6}=\frac{3x+2y+z}{6+6+4}=\frac{3x+2y+z}{16}\left(2\right)\)

Từ (1) và (2) \(\Rightarrow\frac{x+2y+3z}{20}=\frac{3x+2y+z}{16}\)

\(\Rightarrow A=\frac{x+2y+3z}{3x+2y+z}=\frac{20}{16}=\frac{5}{4}\)

Phương Thảo Nguyễn
Xem chi tiết
Trà My
3 tháng 10 2017 lúc 14:41

Đặt \(\frac{x}{5}=\frac{y}{4}=\frac{z}{3}=k\Rightarrow x=5k;y=4k;z=3k\)

=>\(P=\frac{x+2y-3z}{x-2y+3z}=\frac{5k+2.4k-3.3k}{5k-2.4k+3.3k}=\frac{5k+8k-9k}{5k-8k+9k}=\frac{4k}{6k}=\frac{2}{3}\)

Jenny_2690
30 tháng 10 2018 lúc 21:07

hello

Nguyễn Phương Uyên
30 tháng 10 2018 lúc 21:16

x; y; z tỉ lệ với 5; 4; 3

\(\Rightarrow\frac{x}{5}=\frac{y}{4}=\frac{z}{3}\)

\(\Rightarrow\frac{x}{5}=\frac{2y}{8}=\frac{3z}{9}\)

\(\Rightarrow\frac{x+2y-3z}{5+8-9}=\frac{x-2y+3z}{5-8+9}=\frac{x}{5}=\frac{y}{4}=\frac{z}{3}\)

\(\Rightarrow\frac{x+2y-3z}{4}=\frac{x-2y+3z}{6}\)

\(\Rightarrow\frac{x+2y-3z}{x-2y+3z}=\frac{4}{6}=\frac{2}{3}\)

Hà My Trần
Xem chi tiết
Le Thi Khanh Huyen
27 tháng 10 2016 lúc 22:50

Đặt \(x+2y+3z=A\)

Áp dụng tính chất của dãy tỉ số bằng nhau có :

\(A=\frac{x+2y}{2y+3z-3}=\frac{2y+3z}{3z+x-3}=\frac{3z+x}{x+2y-3}=\frac{x+2y+2y+3z+3z+x}{x+2y+2y+3z+3z+x-3-3-3}\)

\(\Rightarrow A=\frac{2A}{2A-9}\)

\(\Rightarrow\frac{2}{2A-9}=1\)

\(\Rightarrow2A-9=2\)

\(\Rightarrow A=\frac{11}{2}\)

Cũng áp dụng tính chất của dãy tỉ số bằng nhau và có :

\(A=\frac{x+2y}{2y+3z-3}=\frac{2y+3z}{3z+x-3}=\frac{3z+x}{x+2y-3}\)

\(=\frac{\left(x+2y\right)+\left(2y+3z\right)-\left(3z+x\right)}{\left(2y+3z-3\right)+\left(3z+x-3\right)-\left(x+2y-3\right)}=\frac{4y}{4y-3}=\frac{11}{2}\)

\(\Rightarrow2.\left(4y\right)=11.\left(4y-3\right)\)

\(\Rightarrow8y=44y-33\)

\(\Rightarrow36y=33\)

\(\Rightarrow y=\frac{11}{12}\)

\(A=\frac{x+2y}{2y+3z-3}=\frac{2y+3z}{3z+x-3}=\frac{3z+x}{x+2y-3}\)

\(=\frac{\left(x+2y\right)-\left(2y+3z\right)+\left(3z+x\right)}{\left(2y+3z-3\right)-\left(3z+x-3\right)+\left(x+2y-3\right)}=\frac{2x}{2x-3}=\frac{11}{2}\)

\(\Rightarrow2.\left(2x\right)=11\left(2x-3\right)\)

\(\Rightarrow4x=22x-33\)

\(\Rightarrow18x=33\)

\(\Rightarrow x=\frac{33}{18}=\frac{11}{6}\)

\(\Rightarrow3z=A-x-2y=\frac{11}{2}-\frac{11}{6}-\frac{2.11}{12}=\frac{11}{6}\)

\(\Rightarrow z=\frac{11}{6}:3=\frac{11}{18}\)

Vậy ...

Le Thi Khanh Huyen
28 tháng 10 2016 lúc 6:42

Cho mình bổ sung : \(TH2:A=0\)

\(\Rightarrow2x=4y=6z=0\)

\(\Rightarrow x=y=z=0\)

Vậy ....

nguyen thi thu huong
28 tháng 10 2016 lúc 13:51

1*777153566666666689+635652