1, Cho hai số dương x,y thỏa mãn x+y=1. Tính giá trị nhỏ nhất của biểu thức : \(M=\left(x^2+\frac{1}{y^2}\right)\left(y^2+\frac{1}{x^2}\right)\)
2, Cho x,y,z là các số dương thỏa mãn \(\frac{1}{x+y}+\frac{1}{y+z}+\frac{1}{x+z}=6\) . Cmr : \(\frac{1}{3x+3y+2z}+\frac{1}{3x+2y+3z}+\frac{1}{2x+3y+3z}\le\frac{3}{2}\)
Cho x, y,z là các số dương thay đổi thỏa mãn \(\frac{1}{x+y}+\frac{1}{y+z}+\frac{1}{z+x}=2017\)
Tính giá trị lớn nhất của biểu thức: P=\(\frac{1}{2x+3y+3z}+\frac{1}{3x+2y+3z}+\frac{1}{3x+3y+2z}\)
Chõ,y,z là các số dương thỏa mãn x+y+z=6Timf GTNN của biểu thức
A=\(\frac{x^2}{x+2y+3z}+\frac{y^2}{y+2z+3x}+\frac{z^3}{z+2x+3y}\)
Cho x,y,z là các số thực dương thỏa mãn đẳng thức xy+yz+zx=5. Tìm giá trị nhỏ nhất của biểu thức
\(P=\frac{3x+3y+3z}{\sqrt{6\left(x^2+5\right)}+\sqrt{6\left(y^2+5\right)}+\sqrt{6\left(z^2+5\right)}}\)
Cho các số dương x, y, z thoả mãn: \(\frac{1}{x+y}+\frac{1}{y+z}+\frac{1}{z+x}=6\). Tìm giá trị lớn nhất của biểu thức: \(P=\frac{1}{3x+3y+2z}+\frac{1}{3x+2y+3z}+\frac{1}{2x+3y+3z}\)
Câu 1: Tìm m để phương trình: (x-2)(x-3)(x+4)(x+5)=m có 4 nghiệm phân biệt.
Câu 2: Cho 3 số thực x,y,z thỏa mãn: \(\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}=1\). Tìm giá trị nhỏ nhất của biểu thức:
P=\(\frac{z^2y^2}{x\left(y^2+z^2\right)}+\frac{z^2x^2}{y\left(z^2+x^2\right)}+\frac{x^2y^2}{z\left(x^2+y^2\right)}\)
Cho x,y,z là các số dương thay đổi thỏa mãn \(\frac{1}{x+y}\) +\(\frac{1}{y+z}\) +\(\frac{1}{z+x}\) =2017. Tìm giá trị lớn nhất của biểu thức:
P=\(\frac{1}{2x+3y+3z}\) +\(\frac{1}{3x+2y+3z}\) +\(\frac{1}{3x+3y+2z}\)
Cho các số thực dương x, y, z thỏa mãn \(\frac{12}{xy}+\frac{20}{yz}+\frac{15}{zx}\le1\). Tìm giá trị nhỏ nhất của biểu thức \(P=\frac{3}{\sqrt{x^2+9}}+\frac{4}{\sqrt{y^2+16}}+\frac{5}{\sqrt{z^2+25}}\)
Cho x>0, y>0, z>0 và x+2y+3z\(\ge\)20. Tìm GTLN của P= x+y+z+\(\frac{3}{x}+\frac{9}{2y}+\frac{4}{z}\)