Chứng minh biểu thức không phụ thuộc vào biến:
a) \(\left(2x+3\right)\left(4x^2-6x+9\right)-2.\left(4x^2-1\right)\)
b) \(\left(x+3\right)^3-\left(x+9\right)\left(x^2+27\right)\)
CM giá trị của biểu thức sau không phụ thuộc vào x
\(\left(2x+3\right)\left(4x^2-6x-9\right)-2\left(4x^2-1\right)\)
\(\left(x+3\right)^3-\left(x+9\right)\left(x^2+27\right)\)
Bài làm ;
\(\left(x+3\right)^3-\left(x+9\right)\left(x^2+27\right)\)
\(=x^3+9x^2+27x+3^3-\left(x^3+27x+9x^2+243\right)\)
\(=x^3+9x^2+27x+27-x^3-27x-9x^2-243\)
\(=\left(x^3-x^3\right)+\left(9x^2-9x^2\right)+\left(27x-27x\right)+\left(27-243\right)\)
\(=-216\)
=> Giá trị của biểu thức không phụ thuộc vào biến x .
( 2x + 3 )( 4x2 - 6x - 9 ) - 2( 4x2 - 1 )
= 2x( 4x2 - 6x - 9 ) + 3( 4x2 - 6x - 9 ) - 8x2 + 2
= 8x3 - 12x2 - 18x + 12x2 - 18x - 27 - 8x2 + 2
= 8x3 - 8x2 - 36x - 25 ( có phụ thuộc vào biến )
( x + 3 )3 - ( x + 9 )( x2 + 27 )
= x3 + 9x2 + 27x + 27 - [ x( x2 + 27 ) + 9( x2 + 27 ) ]
= x3 + 9x2 + 27x + 27 - ( x3 + 27x + 9x2 + 243 )
= x3 + 9x2 + 27x + 27 - x3 - 27x - 9x2 - 243
= -216 ( đpcm )
\(\left(2x+3\right)\left(4x^2-6x-9\right)-2\left(4x^2-1\right)\)
Áp dụng hẳng đẳng thức \(\left(A+B\right)\left(A^2-AB+B^2\right)=A^3+B^3\), ta có:
\(\left(2x+3\right)\left(4x^2-6x-9\right)-2\left(4x^3-1\right)=\left(2x\right)^3+3^3-8x^3+2\)\(=8x^3+27-8x^3+2=29\)
Vậy....
chứng minh biểu thức A không thuộc vào biến x
A = \(\left(2x+3\right)\left(4x^2-6x+9\right)-2\left(4x^3-1\right)-36\)
A = (2x+3)(4x2−6x+9)−2(4x3−1)−36
=8x3-12x2+18x+12x2-18x+27-8x3+2-36
=-7
Ta có: \(A=\left(2x+3\right)\left(4x^2-6x+9\right)-2\left(4x^3-1\right)-36\)
\(=8x^3+27-8x^3+2-36\)
\(=-7\)
1/ Chứng minh ác biểu thức sau không phụ thuộc vào x:
a)\(\left(3x-5\right)\left(2x+11\right)-\left(2x+3\right)\left(3x+7\right)\)
b) \(\left(x-5\right) \left(2x+3\right)-2x\left(x-3\right)+x+7\)
c) \(\left(2x+3\right)\left(4x^2-6x+9\right)-2\left(4x^3-1\right)\)
a)
( 3x - 5 ) ( 2x + 11 ) - ( 2x + 3 ) ( 3x + 7 )
= ( 6x^2 + 33x - 10x - 55 ) - ( 6x^2 + 14x + 9x + 21 )
= ( 6x^2 + 23x - 55 ) - ( 6x^2 + 23x + 21 )
= 6x^2 + 23x - 55 - 6x^2 - 23x - 21
= ( 6x^2 - 6x^2 ) + ( 23x - 23x ) - ( 55 + 21 )
= -76
=> với mọi x thì giá trị của biểu thức luôn bằng -76
=> đpcm
b)c) tương tự
cái này khá dài nên mik ns lun nha
: bạn nhân đa thức vs đa thức làm bình thường vậy thôi . kết quả là 1 số tự nhiên thì nó kg phụ thuộc vào biến nha
chuk hok tốt
Chứng minh các biểu thức sau không phụ thuộc vào x:
1, \(A=3\left(sin^4x+cos^4x\right)-2\left(sin^6x+cos^6x\right)\)
2, \(B=cos^6x+2sin^4x.cos^2x+3sin^2x.cos^4x+sin^4x\)
3, \(C=cos\left(x-\dfrac{\pi}{3}\right).cos\left(x+\dfrac{\pi}{4}\right)+cos\left(x+\dfrac{\pi}{6}\right).cos\left(x+\dfrac{3\pi}{4}\right)\)
4, \(D=cos^2x+cos^2\left(x+\dfrac{2\pi}{3}\right)+cos^2\left(\dfrac{2\pi}{3}-x\right)\)
5, \(E=2\left(sin^4x+cos^4x+sin^2x.cos^2x\right)-\left(sin^8x+cos^8x\right)\)
6, \(F=cos\left(\pi-x\right)+sin\left(\dfrac{-3\pi}{2}+x\right)-tan\left(\dfrac{\pi}{2}+x\right).cot\left(\dfrac{3\pi}{2}-x\right)\)
1,\(A=3\left(sin^4x+cos^4x\right)-2\left(sin^2x+cos^2x\right)\left(sin^4x-sin^2x.cos^2x+cos^4x\right)\)
\(=3\left(sin^4x+cos^4x\right)-2\left(sin^4x-sin^2x.cos^4x+cos^4x\right)\)
\(=sin^4x+2sin^2x.cos^2x+cos^4x=\left(sin^2x+cos^2x\right)^2=1\)
Vậy...
2,\(B=cos^6x+2sin^4x\left(1-sin^2x\right)+3\left(1-cos^2x\right)cos^4x+sin^4x\)
\(=-2cos^6x+3sin^4x-2sin^6x+3cos^4x\)
\(=-2\left(sin^2x+cos^2x\right)\left(sin^4x-sin^2x.cos^2x+cos^4x\right)+3\left(cos^4x+sin^4x\right)\)
\(=-2\left(sin^4x-sin^2x.cos^2x+cos^4x\right)+3\left(cos^4x+sin^4x\right)\)\(=cos^4x+sin^4x+2sin^2x.cos^2x=1\)
Vậy...
3,\(C=\dfrac{1}{2}\left[cos\left(-\dfrac{7\pi}{12}\right)+cos\left(2x-\dfrac{\pi}{12}\right)\right]+\dfrac{1}{2}\left[cos\left(-\dfrac{7\pi}{12}\right)+cos\left(2x+\dfrac{11\pi}{12}\right)\right]\)
\(=cos\left(-\dfrac{7\pi}{12}\right)+\dfrac{1}{2}\left[cos\left(2x-\dfrac{\pi}{12}\right)+cos\left(2x+\dfrac{11\pi}{12}\right)\right]\)\(=\dfrac{-\sqrt{6}+\sqrt{2}}{4}+\dfrac{1}{2}\left[cos\left(2x-\dfrac{\pi}{12}\right)+cos\left(2x-\dfrac{\pi}{12}+\pi\right)\right]\)
\(=\dfrac{-\sqrt{6}+\sqrt{2}}{4}+\dfrac{1}{2}\left[cos\left(2x-\dfrac{\pi}{12}\right)-cos\left(2x-\dfrac{\pi}{12}\right)\right]\)\(=\dfrac{-\sqrt{6}+\sqrt{2}}{4}\)
Vậy...
4, \(D=cos^2x+\left(-\dfrac{1}{2}cosx-\dfrac{\sqrt{3}}{2}sinx\right)^2+\left(-\dfrac{1}{2}.cosx+\dfrac{\sqrt{3}}{2}.sinx\right)^2\)
\(=cos^2x+\dfrac{1}{4}cos^2x+\dfrac{\sqrt{3}}{4}cosx.sinx+\dfrac{3}{4}sin^2x+\dfrac{1}{4}cos^2x-\dfrac{\sqrt{3}}{4}cosx.sinx+\dfrac{3}{4}sin^2x\)
\(=\dfrac{3}{2}\left(cos^2x+sin^2x\right)=\dfrac{3}{2}\)
Vậy...
5, Xem lại đề
6,\(F=-cosx+cosx-tan\left(\dfrac{\pi}{2}+x\right).cot\left(\pi+\dfrac{\pi}{2}-x\right)\)
\(=tan\left(\pi-\dfrac{\pi}{2}-x\right).cot\left(\dfrac{\pi}{2}-x\right)\)\(=tan\left(\dfrac{\pi}{2}-x\right).cot\left(\dfrac{\pi}{2}-x\right)\)\(=cotx.tanx=1\)
Vậy...
Chứng minh biểu thức sau không phụ thuộc vào biến
\(B=\frac{4x^2.\left(x-3\right)^2}{9\left(x^2-1\right)}-\frac{x^2-9}{\left(2x+3\right)^2-x^2}+\frac{\left(2x-3\right)^2-x^2}{4x^2-\cdot\left(x+3\right)^2}\)
trình bày cách làm nữa nha
Chứng minh biểu thức sau không phụ thuộc vào biến.
\(1,\left(2x+3\right).\left(4x^2-6x+9\right)-2.\left(4x^3-1\right)\)
\(2,\left(4x-1\right)^3-\left(4x-3\right).\left(16x^2+3\right)\)
\(3,\left(x+1\right)^3-\left(x-1\right)^3-6.\left(x+1\right).\left(x-1\right)\)
1. \(\left(2x+3\right)\left(4x^2-6x+9\right)-2\left(4x^3-1\right)\)
= \(8x^3+27-8x^3+2=29\)
Vậy biểu thức trên k phụ thuộc vào biến.
2. \(\left(4x-1\right)^3-\left(4x-3\right)\left(16x^2+3\right)\)
= \(64x^3-48x^2+12x-1-64x^3-12x+48x^2+9\)
= \(8\)
Vậy biểu thức trên k phụ thuộc vào biến.
3. \(\left(x+1\right)^3-\left(x-1\right)^3-6\left(x+1\right)\left(x-1\right)\)
= \(x^3+3x^2+3x+1-x^3+3x^2-3x+1-6x^2+6\)
= \(8\)
Vậy biểu thức trên k phụ thuộc vào biến.
Chứng minh giá trị của biểu thức sau không phụ thuộc vào biến:
a) \(\left(3x-5\right)\left(2x+11\right)-\left(2x+3\right)\left(3x+7\right)\)
b) \(\left(2x+3\right)\left(4x^2-6x+9\right)-2\left(4x^3-1\right)\)
Giá trị của biểu thức sau có phụ thuộc vào biến x không
A=\(\left(x+2\right)^3-\left(x-2\right)^3-6x\left(2x+1\right)\)
B=\(8\left(x-1\right)\left(x^2+x+1\right)-\left(2x-1\right)\left(4x^2+2x+1\right)\)
A = (x + 2)3 - (x - 2)3 - 6x(2x + 1)
= x3 + 6x2 + 12x + 8 - (x3 - 6x2 + 12x - 8) - 12x2 - 6x
= x3 + 6x2 + 12x + 8 - x3 + 6x2 - 12x + 8 - 12x2 - 6x
= (x3 - x3) + (6x2 + 6x2 - 12x2) + (12x - 12x - 6x) + (8 + 8)
= -6x + 16
=> có phụ thuộc vào biến x
B = 8(x - 1)(x2 + x + 1) - (2x - 1)(4x2 + 2x + 1)
= 8(x3 - 1) - (8x3 - 1) (sử dụng hằng đẳng thức thứ 6)
= 8x3 - 8 - 8x3 + 1 = (8x3 - 8x3) + (-8 + 1) = -7
=> không phụ thuộc vào biến x
\(A=\left(x+2\right)^3-\left(x-2\right)^3-6x\left(2x+1\right)\)
\(=x^3+6x^2+12x+8-x^3+6x^2-12x+8-12x^2-6x\)
\(=-6x+16\)
Vậy biểu thức A phụ thuộc vào biến x
\(B=8\left(x-1\right)\left(x^2+x+1\right)-\left(2x-1\right)\left(4x^2+2x+1\right)\)
\(=8x^3-8-8x^3+1\)
\(-7\)
Vậy biểu thức B không phụ thuộc vào biến x
Xin lỗi nhé kết quả \(=-7\)mình viết thiếu dấu "="
Chứng minh giá trị của x ko phụ thuộc vào giá trị của biến\(D=\left(5x2\right)^2-\left(6x+1\right)^2+11\left(x-2\right)\left(x+2\right)-16\left(3-2x\right).\)
\(E=4x\left(x-3\right)-\left(x-5\right)^2-3\left(x+1\right)^2+\left(2x+2\right)^2-\left(4x-5\right)\)
\(V=\left(x^2-3\right)^3+9x^2\left(x^3-3\right)-\left(x^2-3\right)\left(x^4+3x^2+9\right)-20.\)