Tìm các số nguyên dương x sao cho:\(A=\frac{3x+2}{2x-3}\)nhận giá trị nguyên
Tìm các số nguyên dương x sao cho: \(A=\frac{3x+2}{2x-3}\)nhận giá trị nguyên
vì A nguyên
=) 3x+2 chia hết 2x-3
(=) 6x+4 chia hết 2x-3
(=) 6x-9+13 chia hết 2x-3
(=) 13 chia hết cho 2x-3
=)2x-3 thuộc -1,1,-13,-13
tiếp theo lập bảng nga bạn
Tìm (x;y) nguyên dương, sao cho:
\(A=\frac{2x+2y-3}{x+1}\) nhận các giá trị nguyên
Tìm các số nguyên x để:
a) A= x^3+x/x-1 nhận giá trị nguyên
b) B= x^2-4x+5/2x-1 nhận giá trị nguyên
c) C= x^3+1/3x-1 nhận giá trị nguyên
d) D= 3x/x^2+2 nhận giá trị nguyên
e) E= 2x-1/x^2+2 nhận giá trị nguyên
Giúp mik vs m đag cần gấp!!!
a)
Để A nguyên \(\Leftrightarrow x^3+x⋮x-1\)
\(\Leftrightarrow x^3-1+x+1⋮x-1\)
\(\Leftrightarrow\left(x-1\right)\left(x^2+x+1\right)+x+1⋮x-1\left(1\right)\)
Vì x nguyên \(\Rightarrow\hept{\begin{cases}x-1\in Z\\x^2+x+1\in Z\end{cases}}\)
\(\Rightarrow\left(x-1\right)\left(x^2+x+1\right)⋮x-1\left(2\right)\)
Từ (1) và (2) \(\Rightarrow x+1⋮x-1\)
\(\Leftrightarrow x-1+2⋮x-1\)
Mà \(x-1⋮x-1\)
\(\Rightarrow2⋮x-1\)
\(\Rightarrow x-1\inƯ\left(2\right)=\left\{\pm1;\pm2\right\}\)
\(\Rightarrow x\in\left\{-1;0;2;3\right\}\)
Vậy \(x\in\left\{-1;0;2;3\right\}\)
b) Để B nguyên \(\Leftrightarrow x^2-4x+5⋮2x-1\)
\(\Leftrightarrow2x^2-8x+10⋮2x-1\)
\(\Leftrightarrow\left(2x^2-x\right)-\left(6x-3\right)-\left(x-7\right)⋮2x-1\)
\(\Leftrightarrow x\left(2x-1\right)-3\left(2x-1\right)-\left(x-7\right)⋮2x-1\)
\(\Leftrightarrow\left(2x-1\right)\left(x-3\right)-\left(x-7\right)⋮2x-1\left(1\right)\)
Vì x nguyên \(\Rightarrow\hept{\begin{cases}2x-1\in Z\\x-3\in Z\end{cases}}\)
\(\Rightarrow\left(2x-1\right)\left(x-3\right)⋮2x-1\left(2\right)\)
Từ (1) và(2) \(\Rightarrow x-7⋮2x-1\)
\(\Leftrightarrow2x-14⋮2x-1\)
\(\Leftrightarrow2x-1-13⋮2x-1\)
Mà \(2x-1⋮2x-1\)
\(\Rightarrow13⋮2x-1\)
\(\Rightarrow2x-1\inƯ\left(13\right)=\left\{\pm1;\pm13\right\}\)
Làm nốt nha các phần còn lại bạn cứ dựa bài mình mà làm
1) Chúng minh: \(3x^2-2x+2\)luôn dương với mọi giá trị của x
2)Cho phân thức A = \(\frac{x^2+2x+1}{x^2-1}\).Tìm giá tri nguyên của x để A nhận giá trị nguyên
1)=2x^2+(x-1)^2+1
Tổng 2 số không âm và 1 luôn dương
2)
Tồn tại A=> x khác +-1
A=(x+1)/(x-1)=1+2/(x-1)
x-1={-2,-1,1,2}
x={-1,0,2,3}
Tìm các cặp số nguyên dương (x ; y) sao cho biểu thức : A = \(\frac{2x+2y-3}{x+y}\)có giá trị nguyên.
đúng nhưng đây đã nâng cao hơn và cx là dạng bồi giỏi của lớp 7
tui nhớ hình như là vậy
B1: Chứng minh rằng:Nếu 10x2+5xy-3y2=0 thì \(\frac{2x-y}{3x-y}+\frac{5y-x}{3x+y}=-3\)
B2:Tìm giá trị nguyên của x sao cho:\(\frac{1}{x}+\frac{1}{x+2}+\frac{x-2}{x^2+2x}\)nhận giá trị nguyên
\(A=\frac{2x-y}{3x-y}+\frac{5y-x}{3x+y}\)
\(=\frac{\left(2x-y\right)\left(3x+y\right)+\left(5y-x\right)\left(3x-y\right)}{\left(3x-y\right)\left(3x+y\right)}\)
\(=\frac{3x^2+15xy-6y^2}{9x^2-y^2}\)
\(=\frac{3\left(x^2+5xy-2y^2\right)}{9x^2-y^2}\)
\(=\frac{3\left(10x^2+5xy-3y^2-9x^2+y^2\right)}{9x^2-y^2}\)
\(=-\frac{3\left(9x^2-y^2\right)}{9x^2-y^2}\)
= - 3 (đpcm)
~~~
\(A=\frac{1}{x}+\frac{1}{x+2}+\frac{x-2}{x^2+2x}\)
\(=\frac{x+2+x+x-2}{x^2+2x}\)
\(=\frac{3x}{x\left(x+2\right)}\)
\(=\frac{3}{x+2}\)
\(A\in Z\)
\(\Leftrightarrow3⋮x+2\)
\(\Leftrightarrow x+2\in\text{Ư}\left(3\right)=\left\{-3:-1;1;3\right\}\)
\(\Leftrightarrow x\in\left\{-5;-3;-1;1\right\}\)
2. Để A có giá trị nguyên => 11 chia hết 2n - 3
=> 2n-3 thuộc Ư(11) = { 1 ; -1 ; 11; -11}
=> 2n thuộc { 4 ; 2 ; 14 ; -8}
=> n thuộc { 2 ; 1 ; 7 ; -4}
Mà n là số tự nhiên => n = 1 ; 2; 7 (tm)
3.\(\frac{-3x-15}{-2x}=3\)=> -3x - 15 = -6x
=> -3x + 6x = 15
=> 3x = 15
=> x = 5 (tm)
4. \(\frac{2}{x+1}=\frac{x+1}{2}\)=> (x+1)2 = 4
=> (x + 1)2 = (+-2)2
=> x + 1 = +-2
=> x = 1 ; -3 (tm)
Vì tích đó có chứa các thừa số 20;30;40;50;60;70;80;90 nên tích 12.14.16...96.98 có chữ số tận cùng là 0
Vậy C có chữ số tận cùng là 0
Cho biểu thức A = \(\frac{3x^2+3x-3}{x^2+x-2}-\frac{x+1}{x+2}+\frac{x-2}{x}\times\left(\frac{1}{1-x}-1\right)\)
a) Rút gọn biểu thức A
b) Tìm các giá trị nguyên của x để A nhận giá trị nguyên
c) Tìm x sao cho A < 0
a) A = \(\frac{3x^2+3x-3}{x^2+x-2}-\frac{x+1}{x+2}+\frac{x-2}{x}\cdot\left(\frac{1}{1-x}-1\right)\)
A = \(\frac{3x^2+3x-3}{x^2+2x-x-2}-\frac{x+1}{x+2}+\frac{x-2}{x}\cdot\left(\frac{1-1+x}{1-x}\right)\)
A = \(\frac{3x^2+3x-3}{\left(x-1\right)\left(x+2\right)}-\frac{x+1}{x+2}+\frac{x-2}{x}\cdot\frac{x}{1-x}\)
A = \(\frac{3x^2+3x-3}{\left(x-1\right)\left(x+2\right)}-\frac{x+1}{x+2}-\frac{x-2}{x-1}\)
A = \(\frac{3x^2+3x-3}{\left(x-1\right)\left(x+2\right)}-\frac{\left(x+1\right)\left(x-1\right)}{\left(x-1\right)\left(x+2\right)}-\frac{\left(x-2\right)\left(x+2\right)}{\left(x-1\right)\left(x+2\right)}\)
A = \(\frac{3x^2+3x-3-x^2+1-x^2+4}{\left(x-1\right)\left(x+2\right)}\)
A = \(\frac{x^2+3x+2}{\left(x-1\right)\left(x+2\right)}\)
A = \(\frac{x^2+2x+x+2}{\left(x-1\right)\left(x+2\right)}\)
A = \(\frac{\left(x+1\right)\left(x+2\right)}{\left(x-1\right)\left(x+2\right)}\)
A = \(\frac{x+1}{x-1}\) (Đk: \(x-1\ge0\) => x \(\ge\)1)
b) Ta có: A = \(\frac{x+1}{x-1}=\frac{\left(x-1\right)+2}{x-1}=1+\frac{2}{x-1}\)
Để A \(\in\)Z <=> 2 \(⋮\)x - 1
<=> x - 1 \(\in\)Ư(2) = {1; -1; 2; -2}
<=> x \(\in\){2; 0; 3; -1}
c) Ta có: A < 0
=> \(\frac{x+1}{x-1}< 0\)
=> \(\hept{\begin{cases}x+1< 0\\x-1>0\end{cases}}\) hoặc \(\hept{\begin{cases}x+1>0\\x-1< 0\end{cases}}\)
=> \(\hept{\begin{cases}x< -1\\x>1\end{cases}}\)(loại) hoặc \(\hept{\begin{cases}x>-1\\x< 1\end{cases}}\)
=> -1 < x < 1
Edogawa Conan
Thiếu dòng đầu \(ĐKXĐ:\hept{\begin{cases}x\ne1\\x\ne-2\\x\ne0\end{cases}}\)
ĐKXĐ : \(\) x # +1 ; x # - 1 ; x # -2 ; x # 0 ; x # 2
Ta có: \(A=\frac{3x^2+3x-3}{x^2+x-2}-\frac{x+1}{x+2}+\frac{x-2}{x}.\left(\frac{1}{1-x}-1\right)\)
\(=\frac{3x^2+3x-3}{x^2+x-2}-\frac{x+1}{x+2}+\frac{x-2}{x}.\frac{x}{1-x}\)
\(=\frac{3x^2+3x-3}{x^2+x-2}-\frac{x+1}{x+2}+\frac{x-2}{1-x}\)
\(=\frac{3x^2+3x-3}{x^2+x-2}-\left(\frac{x+1}{x+2}+\frac{x-2}{x-1}\right)\)
\(=\frac{3x^2+3x-3}{x^2+x-2}-\frac{2x^2-5}{x^2+x-2}\)
\(=\frac{x^2+3x+2}{x^2+x-2}=\frac{\left(x+1\right)\left(x+2\right)}{\left(x-1\right)\left(x+2\right)}\)
\(\frac{x+1}{x-1}\)
b. Ta có: \(A=\frac{x+1}{x-1}=\frac{x-1+2}{x-1}=1+\frac{2}{x-1}\)
Để A nhận giá trị nguyên thì: \(2⋮\left(x-1\right)\Rightarrow\left(x-1\right)\inƯ\left(2\right)\)
+) x - 1 = 1 => x = 2 (loại)
+) x - 1 = 2 => x = 3
+) x - 1 = -1 => x = 0 (loại)
+) x - 1 = -2 => x = -1 (loại)
Vậy x = 3 là giá trị cần tìm.
c. \(A< 0\Leftrightarrow\frac{x+1}{x-1}< 0\)
\(\Leftrightarrow\hept{\begin{cases}x+1>0\\x-1< 0\end{cases}}\) hoặc \(\hept{\begin{cases}x+1< 0\\x-1>0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x>-1\\x< 1\end{cases}}\) hoặc \(\hept{\begin{cases}x< -1\\x>1\end{cases}}\)(vô lý)
Vậy \(-1< x< 1\) và x # 0 là giá trị cần tìm
Cho biểu thức \(A=\frac{2x^2+3x+3}{2x+1}\)Tìm giá trị nguyên để A nhận giá trị nguyên
Ta có : \(ĐKXĐx\ne\frac{-1}{2}\)
\(A=\left(x+1\right)+\frac{2}{2x+1}\)Vì \(x\in Z\)nên để \(A\)nguyên thì \(\frac{2}{2x+1}\)nguyên
Hay \(2x+1\)là \(Ư\left(2\right)\)Vậy :
\(2x+1=2\Rightarrow2x=1\Rightarrow x=\frac{1}{2}\)( loại)
\(2x+1=1\Rightarrow2x=0\Rightarrow x=0\)
\(2x+1=-1\Rightarrow2x=-2\Rightarrow-1\)
\(2x+1=-2\Rightarrow2x=-3\Rightarrow x-\frac{3}{2}\)( loại )
KL: Với \(x=0\)hay \(x=-1\)Thì
\(\Rightarrow\)A nhận giá trị nguyên
1 + 1=
Ai có nhu cầu tình dục cao thì liên hẹ vs e nha, e làm cho, 20k thôi, e cần tiền chữa bệnh cho mẹ