cho 2 số tự nhiên a và b được phân tích thành các thừa số nguyên tố dạng:a=m.n^2,b=n.m^2,m và n là 2 số nguyên tố .Tìm số ước của a và b.
1/ Cho hai số tự nhiên a và b được phân tích thành các thừa số nguyên tố có dạng a = m.n2 và b = n.m2 với m , n là các số nguyên tố
Cho hai số tự nhiên a và b được phân tích thành các thừa số nguyên tố có dang a= m x n2 b = n x m2 với m, n là các số ngyên tố . khẳng định nào sau đâu là đúng
A. a và b có 3 ước chung
B. a và b có 2 ước chung
C. a và b có 4 ước chung
D. a và b có 5 ước chung
ai nhanh mk tick
ý C chác chắn 100% luôn. Mình vừa thi violympic xong.k cho mình nha.
B đúng.Mình vừa làm xong đúng đó!
Click cho mình nha !
bài 1
phân tích các số sau 36,52,134,391,1463 ra thừa số nguyên tố
a) tìm các ước nguyên tố của mỗi số trên
b) tìm các ước nguyên mỗi số
bài 2
a) viết các số chỉ có ước nguyên tố là 7
b) viết bốn số tự nhiên mà mỗi số có đúng ba ước nguyên tố
Cho m, n là 2 số tự nhiên, biết rằng khi khai triển ra các thừa số nguyên tố thì m, n đều được tạo thành từ 7 số nguyên tố lẻ là p1, p2, p3, p4, p5, p6, p7 và m có tất cả 1024 ước số, n có 256 ước số. Chứng minh rằng tích m.n khi chia cho 4 sẽ có số dư là 1.
giúp giải khẩn cấp mng ơi:
1.cho stn n có 1995 ước số có 1 ước nguyên tố chẵn. chứng minh n là số chính phương, n chia hết 4
2. cho a là 1 hợp số, khi phân tích ra thừa số nguyên tố a chỉ chứa 2 thừa số nguyên tố khác nhau là p1 và p2. biết a^3 có tất cả 40 ước số. a^2 có bn ước số
3.tìm số tự nhiên n > hoặc = 1 sao cho tổng 1!+2!+3!+...+n! là một số chính phương
4. tìm số tự nhiên n có 2 c.s biết 2n+1 và 3n+1 đều là scp
5. chứng minh:
a)p và q là 2 số nguyên tố lớn hơn 3 thì p^2-q^2chia hết cho 24
b)Nếu a;a+k;a+2k (a và k thuộc N*) là các số nguyên tố lớn hơn 3 thì k chia hết 6
6.a)Một số nguyên tố chia 43 dư r (r là hợp số).TÌm r
b)1 số nguyên tố chia 30 dư r. Tìm r biết r ko là hợp số
Toán lớp 6Phân tích thành thừa số nguyên tố
Đinh Tuấn Việt 20/05/2015 lúc 22:51
Theo đề bài ta có:
a = p1m . p2n $\Rightarrow$⇒ a3 = p13m . p23n.
Số ước của a3 là (3m + 1).(3n + 1) = 40 (ước)
$\Rightarrow$⇒ m = 1 ; n = 3 hoặc m = 3 ; n = 1
Số a2 = p12m . p22n có số ước là [(2m + 1) . (2n + 1)] (ước)
-Với m = 1 ; n = 3 thì a2 có (2.1 + 1) . (2.3 + 1) = 3 . 7 = 21 (ước)
-Với m = 3 ; n = 1 thì a2 có (2.3 + 1) . (2.1 + 1) = 7 . 3 = 21 (ước)
Vậy a2 có 21 ước số.
Đúng 4 Yêu Chi Pu đã chọn câu trả lời này.
nguyên 24/05/2015 lúc 16:50
Theo đề bài ta có:
a = p1m . p2n $$
a3 = p13m . p23n.
Số ước của a3 là (3m + 1).(3n + 1) = 40 (ước)
$$
m = 1 ; n = 3 hoặc m = 3 ; n = 1
Số a2 = p12m . p22n có số ước là [(2m + 1) . (2n + 1)] (ước)
-Với m = 1 ; n = 3 thì a2 có (2.1 + 1) . (2.3 + 1) = 3 . 7 = 21 (ước)
-Với m = 3 ; n = 1 thì a2 có (2.3 + 1) . (2.1 + 1) = 7 . 3 = 21 (ước)
Vậy a2 có 21 ước số.
Đúng 0
Captain America
Bài 16. Một số nguyên tố chia 42 được dư là r. Biết r là hợp số, tìm giá trị của r.
Bài 17. Phân tích các số sau thành thừa số nguyên tố và tính số ước của mỗi số 2160, 2130, 3210, 3402.
Bài 18. Tìm số tự nhiên x, biết rằng
a) Số ước tự nhiên của số 5.7x là 12.
b) Số 23 .5x .113 có 20 ước lẻ.
c) Số 3 x+1 .5 4 có 9 ước là số chính phương. (Số chính phương là bình phương của một số tự nhiên)
d) Số 2 3 .5 7 .11x−1 .132 có đúng 3 ước nguyên tố.
Bài 19. Tìm các số tự nhiên x, y thỏa mãn 2 x .5 y có 24 ước và x + y = 7
Bài 20.
a) Cho số tự nhiên n. Chứng minh rằng nếu số ước của n là lẻ thì n là bình phương của một số tự nhiên khác.
Điều ngược lại có đúng không? Tại sao?
b) Tìm số tự nhiên n có hai chữ số tận cùng là 15 và có đúng 15 ước.
Bài tập 1: Số nguyên tố rút gọn của một số tự nhiên n chính là tổng các ước nguyên tố của n.
Ví dụ: n=252=2.2.3.3.7 (n có 3 ước nguyên tố là 2, 3 và 7)
Số nguyên tố rút gọn của n là 2+3+7=12
Yêu cầu: a/ Nhập số tự nhiên n từ bàn phím, in ra số nguyên tố rút gọn của n. (1<n<1000000)
b/ Nhập 2 số nguyên a, b không vượt quá 10000 (a<b). In ra các số có cùng số nguyên tố rút gọn với n trong đoạn a đến b và số lượng các số tìm được.
Bài 5:
Tìm số tự nhiên a sao cho: a; a + 1 và a + 2 đều là các số nguyên tố?
Bài 6: Tổng (hiệu) sau là số nguyên tố hay hợp số? a) 5 . 6 . 7 + 8 . 9 ;
b) 5 . 7 . 9 . 11 – 2 . 3 . 7
Bài 7:
Phân tích các số 78; 450 ra thừa số nguyên tố bằng cách “rẽ nhánh” và “theo cột dọc”.
Bài 8:
Biết 2 700 = 22 . 33 . 52. Hãy viết các số 270 và 900 thành tích các thừa số nguyên tố.
Bài 6:
a: Là hợp số
b: Là hợp số
c1
p+1;p+2;p+3p+1;p+2;p+3 là các số tự nhiên liên tiếp
Trong 3 số tự nhiên liên tiếp luôn tồn tại ít nhất 1 số chẵn. Mà số nguyên tố chẵn duy nhất là 2 nên để 3 số đó đều là số nguyên tố thì có 1 số bằng 2.
3 số tự nhiên liên tiếp có 1 số bằng 2 là 1;2;31;2;3 hoặc (2;3;4)(2;3;4)
Cả 2 bộ số trên đều không thỏa mãn vì 1 và 4 không là số nguyên tố.
Do đó không có số tự nhiên p nào thỏa mãn yêu cầu bài toán.
c2
a) 5 . 6 . 7 + 8 . 9
ta có :
5 . 6 . 7 chia hết cho 3
8 . 9 chia hết cho 3
=> 5 . 6 . 7 + 8 . 9 chia hết cho 3 và ( 5 . 6 . 7 + 8 . 9 ) > 3 nên là hợp số
b 5 . 7 . 9 . 11 - 2 . 3 . 7
ta có :
5 . 7 . 9 . 11 chia hết cho 7
2 . 3 . 7 chia hết cho 7
=> 5 . 7 . 9 . 11 - 2 . 3 . 7 chia hết cho 7 và ( 5 . 7 . 9 . 11 - 2 . 3 . 7 ) > 7 nên là hợp số
c3
2:
x+xy+y=4
=>x(y+1)+y+1=5
=>(x+1)(y+1)=5
=>\(\left(x+1;y+1\right)\in\left\{\left(1;5\right);\left(5;1\right);\left(-1;-5\right);\left(-5;-1\right)\right\}\)
=>\(\left(x,y\right)\in\left\{\left(0;4\right);\left(4;0\right);\left(-2;-6\right);\left(-6;-2\right)\right\}\)