Tìm \(a\in Z\) để \(17a+8\) là số chính phương
a. tìm a là số tự nhiên để 17a+8 là số chính phương
b. tìm a là số tự nhiên để 13a+a là số chính phương
c. tìm n là số tự nhiên sao cho 3n+4 là số chính phương
d. tìm n là số tự nhiên sao cho 2n+9 là số chính phương
a. tìm a là số tự nhiên để 17a+8 là số chính phương
Giả sử \(17a+8=x^2\Rightarrow17a-17+25=x^2\Rightarrow17\left(a-1\right)=x^2-25\Rightarrow17\left(a-1\right)=\left(x-5\right)\left(x+5\right)\)
\(\Rightarrow\left(x-5\right);\left(x+5\right)⋮17\)
\(\Rightarrow x=17n\pm5\Rightarrow a=17n^2\pm10n+1\)
tìm \(a\in Z\) để \(a^2+a+6\)là số chính phương
\(a^2+a+6\) là SCP
Suy ra đặt \(a^2+a+6=t^2\left(t\in Z\right)\)
\(\Leftrightarrow4a^2+4a+24=4t^2\)
\(\Leftrightarrow4a^2+4a+1-4t^2=-23\)
\(\Leftrightarrow\left(2t\right)^2-\left(2a+1\right)^2=23\)
\(\Leftrightarrow\left(2t+2a+1\right)\left(2t-2a-1\right)=23\)
Dễ thấy: \(2t+2a+1>2t-2a-1\forall a,t\in Z\)
\(\Rightarrow\hept{\begin{cases}2t+2a+1=23\\2t-2a-1=1\end{cases}}\)\(\Rightarrow\hept{\begin{cases}t=6\\a=5\end{cases}}\)(Thoả)
Vậy \(a=5\) thì \(a^2+a+6=6^2\) là SCP
Tìm a để 17a + 8 là số chính phương
Cho a, b \(\in\)N*. CMR: Nếu (16a + 17b) (16b + 17a) chia hết cho 11 thì tích đó có ít nhất 1 ước là số chính phương
11 là số nguyên tố, (16a+17b)(17a+16b) chia hết cho 11 => có ít nhất một thừa số chia hết cho 11, không giãm tính tính tổng quát, giả sử (16a+17b) chia hết cho 11
ta cm (17a+16b) cũng chia hết cho 11, thật vậy:
16a + 17b chia hết cho 11 => 2(16a + 17b) chia hết cho 11
=> 33(a+b) + b -a chia hết cho 11 => b-a chia hết cho 11
=> a-b chia hết cho 11
Ta có: 2(17a+16b) = 33(a+b) + a-b chia hết cho 11
do 2 và 11 là hai số nguyên tố => 17a+16b chia hết cho 11
Vậy (16a+17b)(17a+16b) chia hết cho 11.11 = 121 = 11^2 là scp => đpcm
Đề cho là (16a+17b) + (16b+17a) chia hết cho 11 chứ đâu phải là (16a+17b) . (16b+17a) chia hết cho 11
cho a;b \(\in\)N*, cmr nếu:
T=\(\left(16a+17b\right)\left(17a+16b\right)⋮11\)thì tích có ít nhất là 1 số chính phương
Câu hỏi của lekhanhhung - Toán lớp 7 - Học toán với OnlineMath
Chứng minh tích chia hết cho 121 , mà 121 là 1 số chính phương
=> T có ít nhất 1 số chính phương.
Tìm \(k\in Z\) để \(k^2+6k+1\) là số chính phương
Để \(k^2+6k+1\)là số chính phương thì \(k^2+6k+1=a^2\left(a\in N\right)\)
\(\left(k^2+6k+9\right)-8=a^2\)
\(\Leftrightarrow\left(k+3\right)^2-a^2=8\)
\(\Leftrightarrow\left(k+a+3\right)\left(k-a+3\right)=8\)
Đến đây liệt kê ước của 8 ra rùi giải tiếp :))
Tìm \(x\in Z\) để x2 + x + 5 là số chính phương.
1. Ta thấy
x = x
Vì vậy
x thuộc Z
2. Ta thấy
x = x
Vì vậy
x thuộc Z
tìm n\(\in\)N để A= \(2^8+2^{11}+2^n\)là số chính phương
Tìm \(x\in Z\) để \(x^2-x+5\) là số chính phương.