để 17a+8 là số chính phương (a\(\in Z\))
khi \(17a+8=y^2\)
<=>\(17a-17+25=y^2\)
<=>\(17\left(x-1\right)=y^2-25< =>17\left(x-1\right)=\left(y-5\right)\left(y+5\right)\)
=>\(\left\{{}\begin{matrix}(y-5)⋮17\\\left(y+5\right)⋮17\end{matrix}\right.\)=>y=\(17n\pm5\)=>a=\(17n^2\pm10n+1\)
Giải:
Giả sử luôn tồn tại y ∈ N sao cho: 17a+8=y2
Khi đó:
17a+8=y2
⇔17a-17+25=y2
⇔17.(a-1)=y2-25
⇔17.(a-1)=(y+5).(y-5)
\(\Leftrightarrow\left[{}\begin{matrix}\left(y-5\right)⋮17\\\left(y+5\right)⋮17\end{matrix}\right.\)
⇔y=17n \(\overset{+}{-}\)5
⇔a=17n2 \(\overset{+}{-}\) 10n+1
Chúc bạn học tốt!