Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Edogawa Conan
Xem chi tiết
Hoàng Yến
Xem chi tiết
giang ho dai ca
21 tháng 5 2015 lúc 19:05

\(\Leftrightarrow4x^2+8x+4=42-6y^2\)

\(\Rightarrow\left(2x+2\right)^2=6\left(7-y^2\right)\)

Vì \(\left(2x+2\right)^2\ge0\)  \(\Rightarrow7-y^2\ge0\)\(\Rightarrow y^2\le7\)

Mà \(y\in Z\)  \(\Rightarrow y=0\); +-1 ; +-2 \(\Rightarrow\) các gt tương ứng của x

đúng nha

bài này cũng dễ

Nguyễn Ngô Minh Trí
3 tháng 11 2017 lúc 17:18

cảm ơn bạn đã giúp 

thanks

k tui nha

Cao Phạm Thùy Linh
15 tháng 11 2017 lúc 21:15

cách giải hay, tks bạn!!

Chúc Quỳnh
Xem chi tiết
hiếu KS
30 tháng 4 2022 lúc 16:44

hehe

Nguyễn Lê Phước Thịnh
30 tháng 4 2022 lúc 18:47

a: đặt \(x^2-2\left(x^2-8\right)=0\)

\(\Leftrightarrow16-x^2=0\)

=>x=4 hoặc x=-4

b: Đặt \(3x-5-4\left(2x+3\right)=0\)

=>3x-5-8x-12=0

=>-5x-17=0

=>-5x=17

hay x=-17/5

c: Đặt \(3y^2-5y=0\)

=>y(3y-5)=0

=>y=0 hoặc y=5/3

d: Đặt \(2x^2-3\left(x^2+4\right)=0\)

\(\Leftrightarrow-x^2-12=0\)

hay \(x\in\varnothing\)

Hồ Hải Ngọc
Xem chi tiết
Dương Thị Thu Hiền
Xem chi tiết
Nguyễn Hoàng Minh
11 tháng 11 2021 lúc 7:20

\(1,\Leftrightarrow\left\{{}\begin{matrix}\Delta=\left(-3\right)^2-4\left(-2\right)\left(-m+1\right)>0\\x_1+x_2=\dfrac{3}{-2}< 0\\x_1x_2=\dfrac{-m+1}{-2}>0\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}17-8m>0\\-m+1< 0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m< \dfrac{17}{8}\\m>1\end{matrix}\right.\Leftrightarrow1< m< \dfrac{17}{8}\)

\(2,\Leftrightarrow\left\{{}\begin{matrix}\Delta=\left(-4\right)^2-4\left(-3\right)\left(-2m+1\right)\ge0\\x_1+x_2=\dfrac{4}{-3}< 0\\x_1x_2=\dfrac{-2m+1}{-3}>0\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}28-24m\ge0\\-2m+1< 0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m\le\dfrac{7}{6}\\m>\dfrac{1}{2}\end{matrix}\right.\Leftrightarrow\dfrac{1}{2}< m\le\dfrac{7}{6}\)

Lê Phan Thảo Đan
Xem chi tiết
Nguyễn Hoàng Minh
5 tháng 10 2021 lúc 10:14

\(A=\left(2x-1\right)^2+9\ge9\\ A_{min}=9\Leftrightarrow x=\dfrac{1}{2}\\ B=2\left(x^2-2\cdot\dfrac{3}{4}x+\dfrac{9}{16}\right)+\dfrac{1}{8}=2\left(x-\dfrac{3}{4}\right)^2+\dfrac{1}{8}\ge\dfrac{1}{8}\\ B_{min}=\dfrac{1}{8}\Leftrightarrow x=\dfrac{3}{4}\\ C=\left(4x^2+4xy+y^2\right)+2\left(2x+y\right)+1+\left(y^2+4y+4\right)-4\\ C=\left[\left(2x+y\right)^2+2\left(2x+y\right)+1\right]+\left(y+2\right)^2-4\\ C=\left(2x+y+1\right)^2+\left(y+2\right)^2-4\ge-4\\ C_{min}=-4\Leftrightarrow\left\{{}\begin{matrix}2x=-1-y\\y=-2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-\dfrac{3}{2}\\y=-2\end{matrix}\right.\)

\(D=\left(3x-1-2x\right)^2=\left(x-1\right)^2\ge0\\ D_{min}=0\Leftrightarrow x=1\\ G=\left(9x^2+6xy+y^2\right)+\left(y^2+4y+4\right)+1\\ G=\left(3x+y\right)^2+\left(y+2\right)^2+1\ge1\\ G_{min}=1\Leftrightarrow\left\{{}\begin{matrix}3x=-y\\y=-2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{2}{3}\\y=-2\end{matrix}\right.\)

Nguyễn Hoàng Minh
5 tháng 10 2021 lúc 10:20

\(H=\left(x^2-2xy+y^2\right)+\left(x^2+2x+1\right)+\left(2y^2+4y+2\right)+2\\ H=\left(x-y\right)^2+\left(x+1\right)^2+2\left(y+1\right)^2+2\ge2\\ H_{min}=2\Leftrightarrow\left\{{}\begin{matrix}x=y\\x=-1\\y=-1\end{matrix}\right.\Leftrightarrow x=y=-1\)

Ta luôn có \(\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2\ge0\)

\(\Leftrightarrow2x^2+2y^2+2z^2-2xy-2yz-2xz\ge0\\ \Leftrightarrow x^2+y^2+z^2\ge xy+yz+xz\\ \Leftrightarrow x^2+y^2+z^2+2xy+2yz+2xz\ge3xy+3yz+3xz\\ \Leftrightarrow\left(x+y+z\right)^2\ge3\left(xy+yz+xz\right)\\ \Leftrightarrow\dfrac{3^2}{3}\ge xy+yz+xz\\ \Leftrightarrow K\le3\\ K_{max}=3\Leftrightarrow x=y=z=1\)

 

Dung Vu
Xem chi tiết
Kudo Shinichi
27 tháng 12 2021 lúc 12:17

\(2x^2+5xy+3y^2\\= 2x^2+2xy+3xy+3y^2\\= 2x\left(x+y\right)+3y\left(x+y\right)\\=\left(2x+3y\right)\left(x+y\right) \)

nhattien nguyen
27 tháng 12 2021 lúc 12:17

2x^2-5xy-3y^2

 = 2^x + xy - 6xy - 3y^2  

= x(2x + y) - 3y(2x + y)  

= (2x + y)(x - 3y)

Lam Phương
Xem chi tiết
Trần Lệ Quyên
Xem chi tiết
Trần Thị Loan
22 tháng 7 2015 lúc 10:46

<=> 2.(x2 + 2x +1) + 3.y2 = 21

<=> 2.(x+1)2 + 3. y2 = 21

Vì 3y2; 21 đều chia hết cho 3 nên 2.(x +1)2 chia hết cho 3 . hơn nữa 2. (x +1)2 \(\le\) 21 và (x+1)2 là số chính phương

=> (x+1)2 =0 hoặc  9 

+) x + 1 = 0 => x = -1 => y 2 = 7 => loại

+) (x+1)= 9 => y= 1

=> x+ 1 = 3 hoặc x+ 1=- 3 => x = 2 hoặc x = -4

y2 = 1 => y = 1 hoặc y = -1

Vậy....