Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Đỗ Gia Huy
Xem chi tiết
Đỗ Gia Huy
2 tháng 8 2016 lúc 22:17

 Đặt tổng là A = 1 + 2 + 2^2 + 2^3 + ... + 2^2002 = 1 + 2 + B 
Kể từ số hạng 2^2 đến 2^2002 có 2001 số hạng mà nhóm ba số hạng liên tiếp ta được một số chia hết cho 7 
Do đó B = 2^2 + 2^3 + 2^4 + ... + 2^2000 + 2^2001 + 2^2002 
= 2^2 (1 + 2 + 2^2) + ... + 2^2000 (1 + 2 + 2^2) 
= 2^2. 7 + 2^5 . 7 + ... + 2^2000. 7 
=> B chia hết cho 7 
Vậy A = 3 + B 
nên A chia 7 dư 3

nguyễn thọ dũng
Xem chi tiết
Trần Khoa
Xem chi tiết
Kẹo Dẻo
Xem chi tiết
Võ Đông Anh Tuấn
31 tháng 7 2016 lúc 17:29

Đặt tổng là A = 1 + 2 + 2^2 + 2^3 + ... + 2^2002 = 1 + 2 + B 
Kể từ số hạng 2^2 đến 2^2002 có 2001 số hạng mà nhóm ba số hạng liên tiếp ta được một số chia hết cho 7 
Do đó B = 2^2 + 2^3 + 2^4 + ... + 2^2000 + 2^2001 + 2^2002 
= 2^2 (1 + 2 + 2^2) + ... + 2^2000 (1 + 2 + 2^2) 
= 2^2. 7 + 2^5 . 7 + ... + 2^2000. 7 
=> B chia hết cho 7 
Vậy A = 3 + B 
nên A chia 7 dư 3

Lê Nguyên Hạo
31 tháng 7 2016 lúc 17:29

\(1+2+2^2+...+2^{2002}\) = 1 + 2 + B

Đặt B = \(2^2+2^3+...+2^{2002}\)

\(=2^2\left(1+2+2^2\right)...+2^{2000}\left(1+2+2^2\right)\)

\(=2^2.7+...+2^{2000}.7\)

\(=7\left(2^2+...+2^{2000}\right)⋮7\)

=> B + 1 + 2 = B + 3

Vì B chia hết cho 7 mà 3 chia 7 dư 3

Vậy A chia 7 dư 3

 

 

Công Chúa Hoa Hồng
31 tháng 7 2016 lúc 17:29

A = 1 + 2 + 2^2 + .....................+ 2^2001 + 2^2002

   = 1 + 2 + ( 22 + 23 + 24 ) + ...... + ( 22000 + 22001 + 22002 )

   =  3 +  22 . ( 1 + 2 + 4 ) + ..... + 22000 . ( 1 + 2 + 4 )

   =  3 + ( 22 + ... + 22000 ) . 7 chia 7 dư 3

Vậy A chia 7 dư 3

Nguyễn Vũ Phương Thảo
Xem chi tiết
Nguyễn Thanh Hằng
15 tháng 8 2017 lúc 11:56

Ta có :

\(b^2=ac\Leftrightarrow\dfrac{a}{b}=\dfrac{b}{c}\)

\(c^2=bd\Leftrightarrow\dfrac{b}{c}=\dfrac{c}{d}\)

\(\Leftrightarrow\dfrac{a}{b}=\dfrac{b}{c}=\dfrac{c}{d}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có :

\(\dfrac{a}{b}=\dfrac{b}{c}=\dfrac{c}{d}=\dfrac{a^3}{b^3}=\dfrac{b^3}{c^3}=\dfrac{c^3}{d^3}=\dfrac{a^3+b^3+c^3}{b^3+c^3+d^3}\)

\(\dfrac{a^3}{b^3}=\dfrac{a}{b}.\dfrac{a}{b}.\dfrac{a}{b}=\dfrac{a}{b}.\dfrac{b}{c}.\dfrac{c}{d}=\dfrac{a}{d}\)

\(\Leftrightarrow\dfrac{a^3+b^3+c^3}{b^3+c^3+d^3}=\dfrac{a}{d}\)

Thang Nguyen
Xem chi tiết
Trung
20 tháng 9 2015 lúc 14:59

Đặt tổng là A = 1 + 2 + 2^2 + 2^3 + ... + 2^2002 = 1 + 2 + B 
Kể từ số hạng 2^2 đến 2^2002 có 2001 số hạng mà nhóm ba số hạng liên tiếp ta được một số chia hết cho 7 
Do đó B = 2^2 + 2^3 + 2^4 + ... + 2^2000 + 2^2001 + 2^2002 
= 2^2 (1 + 2 + 2^2) + ... + 2^2000 (1 + 2 + 2^2) 
= 2^2. 7 + 2^5 . 7 + ... + 2^2000. 7 
=> B chia hết cho 7 
Vậy A = 3 + B 
nên A chia 7 dư 3

Nguyễn Võ Văn
20 tháng 9 2015 lúc 14:59

thấy: 2^k + 2^(k+1) + 2^(k+2) = (1+2+4).2^k = 7.2^k chia hết cho 7 

lại thấy trong A có 2003 số hạng, ta bỏ ra 2 số hạng đầu, còn lại 2001 số hạng: chia hết cho 3 

A = 1+2 + (2^2+2^3+2^4) + (2^5+2^6+2^7) +..+ (2^2000+2^2001+2^2002) 
A = 3 + 7.2^2 + 7.2^5 +..+ 7.2^2000 
=> A chia 7 dư 3

Nguyễn Mỹ Dàng
26 tháng 7 2016 lúc 10:09

A chia 7 dư 3

Mai The Hong
Xem chi tiết
tung nguyen viet
6 tháng 8 2015 lúc 16:21

A= 1+2+2^2+...+2^2001+2^2002

A= (1+2+2^2)+(2^3+2^4+2^5)+...+(2^2010+2^2001+2^2002)

A=7+2^3*(1+2+2^2)+...+2^2010*(1+2+2^2)

A=7*(1+2^3+...+2^2010) chia hết cho 7

Nguyễn Anh Thư
Xem chi tiết
Ngô Thị Phương Thảo
Xem chi tiết