Tìm số tự nhiên a nhỏ nhất, biết rằng khi chia cho 2 dư 1, cho 3 dư 2, cho 4 dư 3,......, cho 10 dư 9.
Giải bằng máy tính casio loại fx-570VN PLUS
Nhờ các bạn giúp mình!
Tìm số tự nhiên x<500 biết rằng khi chia x cho 6, cho 7, cho 8, đều dư 2
Câu1| thực hiện phép tính A=1-5-9+13+17-21-25+29+....+2001-2005-2009+2013+2017
Câu 2|a,Chứng tỏ A=2+2 mũ 2+2 mũ 3+......+2 mũ 100 chia hết cho 31
Câu 3b Tìm số nguyên tố p sao cho p+10 và p+20 cũng là các số nguyên tố
1. Cho A = (1; +∞); B = [−2; 6] . Tập hợp A ∩ B là
A. [−2; +∞)
B. (1; +∞)
C. [−2; 6]
D. (1; 6]
2. Cho A=[–4;7] và B=(-\(\infty\);–2)∪ (3;+\(\infty\)). Khi đó A∩B là:
A.[– 4; – 2) ∪ (3; 7]
B.[– 4; – 2) ∪ (3; 7)
C.(– ∞; 2] ∪ (3; +∞)
D.(−∞; −2) ∪ [3; +∞)
3. Cho ba tập hợp A = (-∞; 3), B = [−1; 8], C = (1 ; +∞). Tập (A ∩ B)\ (A ∩ C) là tập
A. [−1; 1]
B. (1 ; 3)
C. (−1; 3)
D. (−1; 1)
tìm 1 số tự nhiên có 2 chữ số biết nếu lấy số đó chia cho tổng các chữ số của nó thì được 8 dư 3 ?
Cho các số nguyên a1;a2;...an không chia hết cho SNT p. Chứng minh rằng:
\(A=p_1a_1^{\left(p-1\right)k_1}+p_2a_2^{\left(p-2\right)k_2}+..+P_na_n^{\left(p-n\right)k_n}\)chia hết cho p khi và chỉ khi \(\left(p_1+p_2+...+p_n\right)\) chia hết cho p
1 . Chứng minh rằng nếu a5 chia hết cho 5 thì a chia hết cho 5 .
2 . Chứng minh rằng nếu tích 5 số bằng 1 thì tổng của chúng không thể bằng 0 .
3 . Chứng minh rằng tồn tại một giá trị n thuộc N* sao cho n2 + n + 1 không phải lá số nguyên tố .
4 Chứng minh rằng nếu n là số nguyên tố lớn hơn 3 thì n2 - 1 chia hết cho 24 .
tính tỉ số A\B biết
A=4\7.31+6\7.41+9\10.41+7\10.57
B=7\19.31+5\19.43+3\23.43+11\23.57
câu 2 a;chứng tỏ H=1\5^2+2\5^3+3\5^4+.....+11\5^12<1\16
b;tìm tất cả các số tự nhiên m sao cho m^2 +2014 là số chính phương
câu 3 a;cho ba chữ số a;b;c với 0<a<b<c viết tập hợp A các chữ số có 3 chữ số mỗi số gồm ba chữ số trên biết rằng tổng hai chữ số nhỏ nhất trong tập hợp A bằng 499 tìm tổng a+b+c
b;cho S=1\2.3\4.5\6.....9999\10000 so sánh S với 0;01
câu 5 a;tìm các số nguyên dương a;b;c thỏa mãn a^3-b^3-c^3=3abc và a^2 =2(b+c)
b;cho m;n thuộc N sao và P là số nguyên tố thỏa mãn P\m-1=m+n\P
chứng tỏ rằng P^2 =n+2