Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
leducminh
Xem chi tiết
Nguyễn Thị Mỹ Lệ
Xem chi tiết
Cầm Dương
Xem chi tiết
alibaba nguyễn
20 tháng 6 2017 lúc 9:39

Đặt \(\hept{\begin{cases}\left(x+\frac{1}{x}\right)^3=a\\x^3+\frac{1}{x^3}=b\end{cases}}\)

Ta có

\(A=\frac{\left(x+\frac{1}{x}\right)^6-\left(x^6+2+\frac{1}{x^6}\right)}{\left(x+\frac{1}{x}\right)^3+x^3+\frac{1}{x^3}}=\frac{\left(x+\frac{1}{x}\right)^6-\left(x^3+\frac{1}{x^3}\right)^2}{\left(x+\frac{1}{x}\right)^3+x^3+\frac{1}{x^3}}\)

\(=\frac{a^2-b^2}{a+b}=a-b\)

\(=\left(x+\frac{1}{x}\right)^3-\left(x^3+\frac{1}{x^3}\right)\)

\(=x^3+3\left(x+\frac{1}{x}\right)+\frac{1}{x^3}-\left(x^3+\frac{1}{x^3}\right)=\frac{3x^2+3}{x}\)

Lạnh giá
Xem chi tiết
Tô Hồng Nhân
13 tháng 10 2015 lúc 22:53

a/

\(=\left(\frac{1}{\sqrt{x}+3}+\frac{3}{\sqrt{x}\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}\right):\left(\frac{\sqrt{x}}{\sqrt{x}+3}-\frac{3\sqrt{x}}{\sqrt{x}\left(\sqrt{x}+3\right)}\right)\)

\(=\left(\frac{x-3\sqrt{x}+3}{\sqrt{x}\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}\right):\left(\frac{\sqrt{x}-3}{\sqrt{x}+3}\right)\)

\(=\left(\frac{x-3\sqrt{x}+3}{\sqrt{x}\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}\right).\frac{\sqrt{x}+3}{\sqrt{x}-3}\)

\(=\frac{x-3\sqrt{x}+3}{\sqrt{x}\left(\sqrt{x}-3\right)^2}\)

\(=\frac{x-3\sqrt{x}+3}{x\sqrt{x}-6\text{x}+9\sqrt{x}}\)

\(=\frac{x-3\sqrt{x}+3}{x\sqrt{x}-6\text{x}+9\sqrt{x}}\)

 

b/ Vậy để P>1 khi BT trên>1

Ta có phương trình tương đương

\(x-3\sqrt{x}+3-x\sqrt{x}+6\text{x}-9>0\)

\(-x\sqrt{x}+7\text{x}-3\sqrt{x}-6>0\)

Giải pt rồi suy ra

tick cho mình nha

 

 

Thuy Duong Nguyen
Xem chi tiết
Phạm Gia kiệt
Xem chi tiết
êfe
Xem chi tiết
Ryan Nguyễn
Xem chi tiết
Kẻ Vô Danh
Xem chi tiết