tìm 2 số nguyên a,b thỏa mãn 2a+3b-ab=9
cho các số abc thỏa mãn : 2a=3b ; 5b = 4c và a+b+c = 30 . cm rằng giá trị của A = a+b2-c2+37 là một số nguyên tố
cho 2 số a,b thỏa mãn a+b= 19 và 3a/2 = 2b/5. Vậy 2a - 3b = ?
Lời giải:
Áp dụng
$\frac{3a}{2}=\frac{2b}{5}=\frac{a}{\frac{2}{3}}=\frac{b}{\frac{5}{2}}=\frac{a+b}{\frac{2}{3}+\frac{5}{2}}=\frac{19}{\frac{19}{6}}=6$
$\Rightarrow a=6:\frac{3}{2}=4$
$\Rightarrow b = 6:\frac{2}{5}=15$
$\Rightarrow 2a-3b = 2.4-3.15=-37$
Cho a,b,c là các số không âm thỏa mãn:
2a+b+3c=6
3a+4b-3c=4
Tìm GTNN của biểu thức : A = 2a+3b-4c?
🐱
Tìm giá trị nhỏ nhất của S a b c a 2b c Giải: Dự đoán a=2,b=3,c=4 12 18 ... 18 16 4 S 4a 4b 4c a 2b 3c 3a 2b c ... 3 xy yz zx x2 y2 z2 Bài 11 Cho x, y là hai số thực không âm thay đổi. ..... 2 2 Bài 36 Cho a,b,c là các số thuộc 1; 2 thỏa mãn điều kiện a2+b2+c2 = 6.
1)Tìm chữ số ab để số 2345ab chia hết cho 72
2)Tìm các số nguyên dương thỏa mãn a-b= a:b
tìm số nguyên tố p và số chính phương n^2 thỏa mãn n^2+9=261
Tìm tất cả các số nguyên tố a. b, c thỏa mãn abc < ab + bc + ca
Ta có: abc < ab+bc+ca
\(\Rightarrow\frac{ab+bc+ca}{abc}>\frac{abc}{abc}\)
\(\Rightarrow\frac{ab}{abc}+\frac{bc}{abc}+\frac{ca}{abc}>1\)
\(\Rightarrow\frac{1}{a}+\frac{1}{b}+\frac{1}{c}>1\)
Vì a,b,c có vai trò như nhau . Nếu giả sử a>b>c
\(\Rightarrow\frac{1}{a}< \frac{1}{b}< \frac{1}{c}\Rightarrow1< \frac{1}{c}+\frac{1}{a}+\frac{1}{b}< \frac{3}{c}\)
\(\Rightarrow1< \frac{3}{c}\)
\(\Rightarrow c>3\) mà c là SNT \(\Rightarrow c=2\left(1\right)\)
\(\Rightarrow\frac{1}{a}+\frac{1}{b}>1-\frac{1}{2}=\frac{1}{2}\)
\(\Rightarrow b>2\). Giả sử b > 3
\(\frac{1}{b}< \frac{1}{3}\left(2\right)\)mà \(\frac{1}{a}< \frac{1}{b}\)
\(\Rightarrow\frac{1}{a}< \frac{1}{3}\)
Kết hợp (2) \(\Rightarrow\frac{1}{a}+\frac{1}{b}< \frac{1}{3}+\frac{1}{3}=\frac{2}{3}\)mà \(\frac{2}{3}>\frac{1}{2}\)
\(\Rightarrow\) giả sử sai
\(\Rightarrow b< 3\)mà \(b\ne c\Rightarrow b\ne2\)và b là SNT
\(\Rightarrow b=3\left(3\right)\)
\(\Rightarrow\frac{1}{a}>\frac{1}{2}-\frac{1}{3}=\frac{1}{6}\)
\(\Rightarrow a< 6\)mà \(a>b;b=3;b\ne a\)
\(\Rightarrow3< a< 6\)mà a là SNT
\(\Rightarrow a=5\left(4\right)\)
Mà a,b,c vai trò như nhau
Kết hợp (1) , (3) , (4) \(\Rightarrow\left(a,b,c\right)\in\left\{\left(2,3,5\right);\left(5,3,2\right);\left(3,2,5\right);\left(5,2,3\right);\left(2,5,3\right);\left(3,5,2\right)\right\}\)( tm điều kiện )
Mn tham khảo nhé
Cho các số a, b thỏa mãn: \(2a^2+11ab-3b^2=0\) , \(b\ne+-2a\). Tính giá trị biểu thức: \(T=\frac{a-2b}{2a-b}+\frac{2a-3b}{2a+b}\)
co nhieu cau tuong tu tren mang ban tu tm hieu nhe
Cho các số dương a,b thỏa mãn a+b=4. Hãy tìm GTNN của P=2a+3b+\(\frac{6}{a}+\frac{10}{b}\)
Gíup e với e cảm ơn nhiều!! E cần gấp ạ
Em nghĩ là làm như vầy ạ!Nếu sai thì đừng trách em nha,đừng quên là em mới lớp 7.
Ta có: \(P=\left(\frac{3}{2}a+\frac{6}{a}\right)+\left(\frac{5}{2}b+\frac{10}{b}\right)+\frac{1}{2}a+\frac{1}{2}b\)
\(\ge2\sqrt{\frac{3}{2}a.\frac{6}{a}}+2\sqrt{\frac{5}{2}b.\frac{10}{b}}+\frac{1}{2}\left(a+b\right)\)
\(=6+10+\frac{1}{2}.4=6+10+2=18\)
Dấu "=" xảy ra khi a = b = 2.
Vậy....
Giai thích dùm a chỗ lớn hơn hoặc bằng với
cho p là số nguyên tố. Tìm tất cả các số nguyên a thỏa mãn a^2+a-p=0