tìm x , y, z
a) 2x= 3y =5z và x -2y + 3z = 65
b) x/5 =y/3 ; y/7 = z/4 và x + y - z = 132
c) x/4 =y/7 và x . y = 112
có ai ko giúp mk bài này với mik cần gấp
Tìm x , y , z trong các trường hợp sau :
a) 2x=3y=5z và | x - 2y | = 5
b ) 5x = 2y ; 2x = 3z và xy = 90
c ) ( y + z + 1 ) / x = ( x + z + 2 ) / y = ( x + y - 3 ) / z = 1 / ( x + y + z)
Tìm x,y,z trong các trường hợp :
a) 2x = 3y = 5z và | x - 2y | = 5
b) 5x = 2y ; 2x = 3z và xy = 90
c) \(\frac{y+z+1}{x}=\frac{x+z+2}{y}=\frac{x+y-3}{z}=\frac{1}{x+y+z}\)
Tìm x,y,z biết:
a) 2x=3y=5z và |x-2y|=5
b) 5x=2y, 2x=3z và xy=90
c) \(\frac{y+z+1}{x}=\frac{x+z+2}{y}=\frac{x+y-3}{z}=\frac{1}{x+y+z}\)
Tìm x,y,z biết
1)2x=3y-2x và x+y=14
2)5x=4y+2y và x+y=-56
3)3x+2y=7y-3x và x-y=10
4)7x-2y=5x-3y và 2x+3y=20
5)2x=3y-2x=5z và x-y+z=99
6)5x-2y=4y=3z-4y và x+y-z=70
Tìm x , y , z biết :
a) 3x = 2y ; 7y = 5z và x - y + z = 32
b) 3x = 2y ; 5y = 7z và 3x + 5y - 7z = 42
c) 5x = 2y ; 2x = 3z và x . y = 90
d)2x = 3y = 5z và x + y - z = 95
e) \(\frac{x}{2}=\frac{y}{3}=\frac{z}{5}\)và xyz = 810
\(3x=2y\Rightarrow\frac{x}{2}=\frac{y}{3}\)
\(7y=5z\Rightarrow\frac{y}{5}=\frac{z}{7}\)
\(\hept{\begin{cases}\frac{x}{2}=\frac{x}{3}\\\frac{y}{5}=\frac{x}{7}\end{cases}\Rightarrow}\frac{x}{2}=\frac{5y}{15};\frac{3y}{15}=\frac{z}{7}\)
\(\Rightarrow\frac{x}{10}=\frac{y}{15}=\frac{z}{21}\)
Áp dụng tính chát dãy tỉ số = nhau ta có:
\(\frac{x}{10}=\frac{y}{15}=\frac{z}{21}=\frac{x-y+z}{10-15+21}=\frac{32}{16}=2\)
\(\Rightarrow\frac{x}{10}=2\Rightarrow x=20\)
\(\frac{y}{15}=2\Rightarrow y=30\)
\(\frac{z}{21}=3\Rightarrow z=63\)
b, Tự làm
c, \(5x=2y\Leftrightarrow\frac{x}{2}=\frac{y}{5}\)
\(2x=3z\Leftrightarrow\frac{x}{3}=\frac{z}{2}\)
\(\Leftrightarrow\frac{x}{2}=\frac{y}{5};\frac{x}{3}=\frac{z}{2}\)
\(\Leftrightarrow\frac{x}{6}=\frac{y}{15}=\frac{x}{6}=\frac{z}{10}\)
\(\Leftrightarrow\frac{x}{6}=\frac{y}{15}=\frac{z}{10}\)
Đặt \(\frac{x}{6}=\frac{y}{15}=\frac{z}{10}=k(k\inℤ)\)
\(\Leftrightarrow\hept{\begin{cases}x=6k\\y=15k\\z=10k\end{cases}}\)
\(\Leftrightarrow x\cdot y=6k\cdot15k=90\)
\(\Leftrightarrow90:k^2=90\Leftrightarrow k^2=1\Leftrightarrow k=\pm1\)
\(\Leftrightarrow\hept{\begin{cases}x=6k\\y=15k\\z=10k\end{cases}}\Leftrightarrow\hept{\begin{cases}x=6\\y=15\\z=10\end{cases}}\)hay \(\hept{\begin{cases}x=-6\\y=-15\\z=-10\end{cases}}\)
Vậy \((x,y)\in(6,15);(-6,-15)\)
d, \(2x=3y=5z\Leftrightarrow\frac{2x}{30}=\frac{3y}{30}=\frac{5z}{30}\)
\(\Leftrightarrow\frac{x}{15}=\frac{y}{10}=\frac{z}{6}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\frac{x}{15}=\frac{y}{10}=\frac{z}{6}=\frac{x+y-z}{15+10-6}=\frac{95}{19}=5\)
Vậy : \(\hept{\begin{cases}\frac{x}{15}=5\\\frac{y}{10}=5\\\frac{z}{6}=5\end{cases}}\Leftrightarrow\hept{\begin{cases}x=75\\y=50\\z=30\end{cases}}\)
a, x-3 trên 7= y-5 trên 5= z-7 trên 3 và x+y+z= 45
b, 2x = 3y - 2x = 5z và x-y+z = 99
c,3x = 2y - 3z = 4z và x+y- z = 46
a) x/3=y/4=z/5 và 2x + 3y + 5z = 86
b) x/3=y/4; y/6=z/8 và 3x - 2y - z = 13
c) x/3=y/7=z/2 và 2x^2 + y^2+3z^2 = 316
1) x/2=y/3=z/5 và x+2y-3z=77
2) 2x=3y=5z và x-y+z=-33
1. Ta có : \(\frac{x}{2}=\frac{y}{3}=\frac{z}{5}\)=> \(\frac{x}{2}=\frac{2y}{6}=\frac{3z}{15}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\frac{x}{2}=\frac{2y}{6}=\frac{3z}{15}=\frac{x+2y-3z}{2+6-15}=\frac{77}{-7}=-11\)
=> \(\hept{\begin{cases}\frac{x}{2}=-11\\\frac{y}{3}=-11\\\frac{z}{5}=-11\end{cases}}\)=> \(\hept{\begin{cases}x=-22\\y=-33\\z=-55\end{cases}}\)
2. Ta có : \(2x=3y=5z\)=> \(\frac{x}{\frac{1}{2}}=\frac{y}{\frac{1}{3}}=\frac{z}{\frac{1}{5}}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\frac{x}{\frac{1}{2}}=\frac{y}{\frac{1}{3}}=\frac{z}{\frac{1}{5}}=\frac{x-y+z}{\frac{1}{2}-\frac{1}{3}+\frac{1}{5}}=\frac{-33}{\frac{11}{30}}=-90\)
=> \(\hept{\begin{cases}\frac{x}{\frac{1}{2}}=-90\\\frac{y}{\frac{1}{3}}=-90\\\frac{z}{\frac{1}{5}}=-90\end{cases}}\)=> \(\hept{\begin{cases}x=-45\\y=-30\\z=-18\end{cases}}\)
Bài 2 : Tìm x , y . z trong các trường hợp sau :
a) 2x = 3y = 5z và / x - 2y / = 5
b) 5x = 2y , 2x = 3z và xy = 90