tìm các số nguyên dương x,y thỏa mãn : 7x^2 + 13y^2 = 1820
tìm các cặp số nguyên x,y thảo mãn 7x2 +13y2 =1820
Ta có :
1820 = 7 . 13 . 20 nên từ 7x2 + 13y2 = 1820 suy ra x ⋮⋮13 và y ⋮⋮7
đặt x = 13k ; y = 7t ( k, t ∈∈N* ) , từ 7x2 + 13y2 = 1820 ta có :
7 . 132 . k2 + 13 . 72 . t2 = 1820
nên : 13k2 + 7t2 = 20
suy ra : k2 = 1 ; t2 = 1 vì k,t ∈∈N* nên k = t = 1 do đó x = 13 , y = 7
Vậy ...
Ta có :
1820 = 7 . 13 . 20 nên từ 7x2 + 13y2 = 1820 suy ra x ⋮ 13 và y ⋮ 7
Đặt x = 13k ; y = 7t ( k, t ∈ N* ) , từ 7x2 + 13y2 = 1820 ta có :
7 . 132 . k2 + 13 . 72 . t2 = 1820
nên : 13k2 + 7t2 = 20
suy ra : k2 = 1 ; t2 = 1 vì k,t ∈∈N* nên k = t = 1 do đó x = 13 , y = 7
Vậy x = 13
y = 7
Chúc bạn học tốt nhá
Tìm các cặp số nguyên x,y thỏa mãn 7x+13y=119
gọi y=7k
=>7x+13.7.k=119
=>x+13k=17(bớt 2 vế đi 7)
=>k=1
Vì nếu k=2 thì x+13.2=x+26>17
=>y=1.7=7
=>7x+13.7=119
=>7x=119-13.7
=>7x=28
=>x=4
Vậy (x;y)=(4;7)
tìm các cặp số nguyên x,y thảo mãn 7x2 +13y2 =1820
Ta có :
1820 = 7 . 13 . 20 nên từ 7x2 + 13y2 = 1820 suy ra x ⋮13 và y ⋮7
đặt x = 13k ; y = 7t ( k, t ∈N* ) , từ 7x2 + 13y2 = 1820 ta có :
7 . 132 . k2 + 13 . 72 . t2 = 1820
nên : 13k2 + 7t2 = 20
suy ra : k2 = 1 ; t2 = 1 vì k,t ∈N* nên k = t = 1 do đó x = 13 , y = 7
Vậy x=7
\(7x^2+13y^2=1820\)
Ta có : \(y^2\le1820:13=140\)
\(\left|y\right|\le\sqrt{140}=11,833\)
Lại có 1820 chia hết cho 7 và 13 không chia hết cho 7\(\Rightarrow y^2⋮7\)
Từ đó ta có :y = 7 hoặc y = -7 thay vào ta tìm được x = 13 hoặc x = -13
Tìm các số nguyên dương x , y thỏa mãn :
\(x^2-6xy+13y^2=100\)
\(2x^2+4x=19-3y^2\)
tìm cặp số nguyên x, y thỏa mãn `x^2 +xy-6y^2 +x+13y=17`
Lời giải:
$x^2+xy-6y^2+x+13y=17$
$\Leftrightarrow x^2+x(y+1)-(6y^2-13y+17)=0$
Coi đây là pt bậc 2 ẩn $x$ thì để pt có nghiệm nguyên thì:
$\Delta = (y+1)^2+4(6y^2-13y+17)$ là scp
$\Leftrightarrow 25y^2-50y+69$ là scp
Đặt $25y^2-50y+69=t^2$ với $t$ là số tự nhiên
$\Leftrightarrow (5y-5)^2+44=t^2$
$\Leftrightarrow 44=(t-5y+5)(t+5y-5)$
Đến đây là dạng pt tích đơn giản rồi. Bạn có thể tự giải.
tìm các số nguyễn,y thỏa mãn:
a, x2+y2+5x2y2+60=37xy
b,7x2+13y2=1820
a) x=y=2; x=y=-2
b) (x;y)=(-13;7)=(13;7)
Có tồn tại hay không các số nguyên dương thỏa mãn \(\hept{\begin{cases}x^2+13y^2=z^2\\y^2+13x^2=t^2\end{cases}}\)
Tìm nghiệm nguyên dương (x,y) thỏa mãn:
x2(x2-y+2)+y2+13y+1\(\le\)8xy biết x khác 4
mik hs thanh lịch ko có nhu cầu