Tim gia tri lon nhat cua P= -5x^2 - 4x + 1
tim gia tri lon nhat cua bieu thuc A=3-4x/x2+1
\(ax^2+a=3-4x\Leftrightarrow ax^2+4x+a-3=0\left(1\right)\)
tìm tiềm kiện để (1) có nghiệm
a=0=>có nghiệm x=3/4 với a khác không
\(2^2-a\left(a-3\right)\ge0\)
\(\Leftrightarrow a^2-3a-4\le0\)\(\Rightarrow-1\le a\le4\)
GTLN A=\(4\)
A=(3-4x)/(x^2+1)
ta có 4-A=4-(3-4x)/(x^2+1)
=[4(x^2+1)-3+4x]/(x^2+1)
=(4x^2+4-3+4x)/(x^2+1)=(4x^2+4x+1)/(x^2+1)
=(2x+1)^2/(x^2+1) >= 0 với mọi x
=>A=4-(2x+1)^2/(x^2+1) <= 4 với mọi x
Vậy maxA=4 ,dấu "=" xảy ra khi x=-1/2
tim gia tri lon nhat cua A=\(\frac{4x^2}{x^4+1}\)
tim gia tri lon nhat cua P=2x+\(\sqrt{1-4x-x^2}\)
voi A = 2 gia tri cua bieu thuc A la
A =
tim gia tri cua bieu thuc a de bieu thuc A co gia tri lon nhat tim gia tri lon nhat do
TIM GIA TRI LON NHAT CUA BIEU THUC :
C=2+12/3x/X+5/+4
TIM GIA TRI NHO NHAT CUA BIEU THUC
C= -15/ 4x / 3X+7/+3
Tim gia tri nho nhat va lon nhat cua bieu thuc sau: \(p=\frac{4x+3}{x^2+1}\)
P + 1 = (x^2+1+4x+3)/x^2+1 = (x^2+4x+4)/x^2+1 = (x+2)^2/x^2+1 >= 0
=> P >= -1
Dấu "=" xảy ra <=> x+2 = 0 <=> x =-2
Vậy Min P = -1 <=> x = -2
Lại có : 4 - P = (4x^2+4-4x-3)/x^2+1 = (4x^2-4x+1)/x^2+1 = (2x-1)^2/x^2+1 >=0
=> P <= 4
Dấu "=" xảy ra <=> 2x-1 = 0 <=> x= 1/2
Vậy Max P = 4 <=> x=1/2
Câu trả lời hay nhất: Biểu diễn P:
P = x^2 - 4x + 5
= x^2 - 4x + 4 + 1
= (x^2 - 4x + 4) + 1
= (x - 2)^2 + 1 >= 1
Vậy giá trị nhỏ nhất đạt được của P = 1 khi:
(x - 2)^2 = 0
<=> x - 2 = 0
<=> x = 2
tim gia' tri. lon' nhat' cua? bieu thuc
F=-x^2-4x+20
\(F=-x^2-4x+20=-\left(x^2+4x-20\right)\)
\(=-\left(x^2+4x+4-24\right)=-\left(x+2\right)^2+24\le24\)
Dấu ''='' xảy ra khi x = -2
Vậy GTLN F là 24 khi x = -2
Ta có: \(F=-x^2-4x+20\)
\(=-\left(x^2+4x-20\right)\)
\(=-\left(x^2+4x+4-24\right)\)
\(=-\left(x+2\right)^2+24\le24\forall x\)
Dấu '=' xảy ra khi x=-2
tim gia tri lon nhat cua \(\frac{\sqrt{5x+1}}{7x+3}\)
Tim gia tri cua x va y de bieu thuc C = -|x-2|-|y-3|-2009 co gia tri lon nhat ,tim gia tri lon nhat do
GTNN là -2009 <=> x = 2; y = 3
C không có GTLN vì x và y càng lớn hoặc càng nhỏ thì -|x - 2| và -|y - 3| càng nhỏ
Vì - / x-2/ </0
và - / y -3/ </ 0
=> C = -/ x-2/ - / y -3/ - 2009 </ 0+0-2009 = - 2009
Max C = -2009 khi x -2 =0 => x =2 và y -3 =0 => y =3
Ta có -|x - 2| < 0 ; -|y - 3| < 0
=> -|x - 2| - |y-3| < 0
=> C = -|x -2| - |y - 3| - 2009 < - 2009
GTLN của C là -2009 <=> |x - 2| = 0 ; |y - 3| = 0 <=> x = 2 và y = 3