CMR:5n+3;2n-1 là hai số nguyên tố cùng nhau
Cmr n thuộc N ( cmr : n lớn hơn hoặc bằng 2)
3/9.14+3/14.19+...+3/(5n-1).(5n+4)<1/15
CMR: Với mọi n thuộc N; n>1 thì: 3/9.14+3/14.19+3/19.24+...+3/(5n-1)(5n+4) < 1/15
CMR
a,A=12^2003^2004+2003^12^2004-2 chia hết cho 11
b.Với n thuộc N. CMR: nếu 5n +2 chia hết cho 3 thì 25n^2 +5n ko chia hết cho 3
cmr 5n+3/3n+2 là phân số tối giản
Gọi UWCLN(5n+3,3n+2) = d
Ta có: \(\left\{{}\begin{matrix}5n+3⋮d\\3n+2⋮d\end{matrix}\right.\)\(\Rightarrow\left\{{}\begin{matrix}3\left(5n+3\right)⋮d\\5\left(3n+2\right)⋮d\end{matrix}\right.\)\(\Rightarrow\left\{{}\begin{matrix}15n+9⋮d\\15n+10⋮d\end{matrix}\right.\)
\(\Rightarrow\left(15n+10\right)-\left(15n+9\right)⋮d\)
\(\Rightarrow1⋮d\)
\(\Rightarrow d=\pm1\)
=> đpcm
Đoạn đầu là ƯCLN(5n+3,3n+2)=d bạn nhé, bị lỗi mà mình không để ý
CMR
a.A=12^2003^2004+2003^12^2004-2 chia hết cho 11
b.Cho x,y thuộc Z .cmr nếu 5n+2 chia hết cho 3 thì 25n^2+5n ko chia hết cho 3 với n thuộc N
CMR n3+5n chia hết 6
CMR:2n-3 và 5n+1 là 2 số nguyên tố
Đặt `d = (2n-3, 5n+1).`
`-> {(2n-3 vdots d), (5n+1 vdots d):}`
`<=> {(10n-15 vdots d), (10n+2 vdots d):}`.
`<=> 17 vdots d <=> d = +-1, +-17`.
Bạn xem lại đề bài nha.
CMR n^2+5n+9 chia hết cho n+3
CMR n(5n-3 ) chia hết n+1
cmr với mọi n thuộc N, n > hoặc = 2 ta có
\(\frac{3}{9.14}+\frac{3}{14.19}+\frac{3}{19.24}+...+\frac{3}{\left(5n-1\right)\left(5n+4\right)}\)
\(\frac{3}{9.14}+\frac{3}{14.19}+...+\frac{3}{\left(5n-1\right)\left(5n+4\right)}\)
\(=\frac{3}{5}\left(\frac{1}{9}-\frac{1}{14}+\frac{1}{14}-\frac{1}{19}+...+\frac{1}{5n-1}-\frac{1}{5n+4}\right)\)
\(=\frac{3}{5}\left(\frac{1}{9}-\frac{1}{5n+4}\right)\)
\(=\frac{3}{5}.\frac{5n-5}{45n+36}=\frac{n-1}{45n+36}\)