cho a+1/a=3. Tinh a^2+1/a^2; a^3+1/a^3; a^5+1/a^5
1: Cho a^2 + b^2 + c^2 = a^3 + b^3 + c^3 = 1. tinh gt cac bieu thuc : C = a^2 + b^9 + c^1945.
2: Cho hai so a va b thoa man: a^3 – 3a^2 + 5a – 17 = 0 va b^3 – 3b^2 + 5b + 11 = 0.hay tinh : D = a + b.
3: Cho a^3 – 3ab^2 = 19 va b^3 – 3a^2b = 98. hay tinh : E = a^2 + b^2.
Please...!!!! 1 bài thôi cgx đc nha (tốt nhất là cả) ^_^
bai 1 tinh
a,2/3-1,8:-0.75+1/2
b, 3^3.(1/3)^4
c,(1+1/2):(2/3-3/4)^2
bai 2
a, cho a/3=b/2=c/6 va a-b+c =-10,2 . TINH a,b,c
b, cho a/b=c/d CMR: A+B/A-B=C+D/C-D
giup mk nha mn
cho a+b+c=1;a^2+b^2+c^2=1;a^3+b^3+c^3=1 tinh a^1989+b^1999+c^2000
tc \(0\le a;b;c\le1\)
\(a^3+b^3+c^3+a+b+c=2a^2+2b^2+2c^2=2\)
\(a^3-2a^2+a+b^3-2b^2+b+c^3-2c^2+c=0\)
\(a\left(a-1\right)^2+b\left(b-1\right)^2+c\left(c-1\right)^2=0\)
\(\hept{\begin{cases}a\left(a-1\right)^2=0\\b\left(b-1\right)^2=0\\c\left(c-1\right)^2=0\end{cases}}\)
đến đây lập luận ok
Giup mink nhanh nha:
1. Cho: x+y+z=3
va x^3+y^3+z^3+6=3(x^2+y^2+z^2)
Tinh P= (x^2015-1)(y^2015-1)(z^2015-1)
2.Cho a,b,c khac nhau va a^2-b=b^2-c=c^2-a. Tinh Q=(a+b+1)(b+c+1)(c+a+1)
2, 2/5 : 2/3 -1/6
1/2+3×1/6
3,cho bieu thuc A= x ×50 -19,2
a,tinh gia tri cua A voi x= 0,5
b,tinh x khi A= 80,8
cho 1/a+1/b+1/c=3 va a+b+c=3abc tinh a= 1/a2+1/b2+1/c2
bình phương (1/a+1/b+1/c) rồi áp dụng HĐT tính bình thường
Cho a,b,c thoa man a+b+c=6 va ( a-1)^3 +(b-2)^3 +(c-3)^3 =0. Tinh T = (a-1)^2n+1 + (b-2)^2n+1 + (c-3)^2n+1
Sử dụng:
\(A^3+B^3+C^3-3ABC=\left(A+B+C\right)\left(A^2+B^2+C^2-AB-BC-AC\right)\) (1)
Áp dụng vào bài:
\(\left(a-1\right)^3+\left(b-2\right)^3+\left(c-3\right)^3-3\left(a-1\right)\left(b-2\right)\left(c-3\right)\)
\(=\left(a-1+b-2+c-3\right)\)[ \(\left(a-1\right)^2+\left(b-2\right)^2+\left(c-3\right)^2\)
\(+\left(a-1\right)\left(b-2\right)+\left(a-1\right)\left(c-3\right)+\left(b-2\right)\left(c-3\right)\)]
<=> \(0-3\left(a-1\right)\left(b-2\right)\left(c-3\right)=0\)
( vì \(a-1+b-2+c-3=a+b+c-6=6-6=0\))
<=> \(\left(a-1\right)\left(b-2\right)\left(c-3\right)=0\)
<=> a = 1 hoặc b = 2 hoặc c = 3.
Không mất tính tổng quát: g/s : a = 1
Khi đó: b + c =5
Ta có: \(T=\left(b-2\right)^{2n+1}+\left(c-3\right)^{2n+1}\)
\(=\left(b-2+c-3\right).A\)
\(=\left(b+c-5\right).A\)
\(=0.A=0\)
Với \(A=\left(b-2\right)^{2n}-\left(b-2\right)^{2n-1}\left(c-3\right)+\left(b-2\right)^{2n-2}\left(c-3\right)^2-...+\left(c-3\right)^{2n}\)
Tương tự b = 2; c= 3 thì T = 0.
Vậy T = 0.
cho A= 1/2+1/3+1/4+....+1/2020 va B=2019/1+2018/2+2017/3+......+1/2019 Tinh A/B
\(B=\frac{2019}{1}+\frac{2018}{2}+\frac{2017}{3}+......+\frac{1}{2019}\)
\(=\left(\frac{2018}{2}+1\right)+\left(\frac{2017}{3}+1\right)+.....+\left(\frac{1}{2019}+1\right)+1\)
\(=\frac{2020}{2}+\frac{2020}{3}+\frac{2020}{4}+.....+\frac{2020}{2019}+\frac{2020}{2020}\)
\(=2020\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+......+\frac{1}{2020}\right)\)
\(=2020A\)
\(\Rightarrow\frac{A}{B}=\frac{A}{2020A}=\frac{1}{2020}\)
cho a=1/2+1/3+1/4+...+1/108+1/109 va b= 108/1+107/2+106/3+...+2/101+1/108 tinh a/b