Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Thị Diệu Thảo
Xem chi tiết
ngoc beall
Xem chi tiết
Quang Trần Minh
Xem chi tiết
Phan Văn Hiếu
10 tháng 8 2017 lúc 20:05

tc \(0\le a;b;c\le1\)

\(a^3+b^3+c^3+a+b+c=2a^2+2b^2+2c^2=2\)

\(a^3-2a^2+a+b^3-2b^2+b+c^3-2c^2+c=0\)

\(a\left(a-1\right)^2+b\left(b-1\right)^2+c\left(c-1\right)^2=0\)

\(\hept{\begin{cases}a\left(a-1\right)^2=0\\b\left(b-1\right)^2=0\\c\left(c-1\right)^2=0\end{cases}}\)

đến đây lập luận ok

Luật Lê Bá
Xem chi tiết
lythidung
Xem chi tiết
Xuân Lộc
Xem chi tiết
hello
8 tháng 4 2018 lúc 19:26

bình phương (1/a+1/b+1/c) rồi áp dụng HĐT tính bình thường

Akira Kinomoto
Xem chi tiết
Nguyễn Linh Chi
13 tháng 10 2019 lúc 22:49

Sử dụng: 

\(A^3+B^3+C^3-3ABC=\left(A+B+C\right)\left(A^2+B^2+C^2-AB-BC-AC\right)\) (1)

Áp dụng vào bài:

\(\left(a-1\right)^3+\left(b-2\right)^3+\left(c-3\right)^3-3\left(a-1\right)\left(b-2\right)\left(c-3\right)\)

\(=\left(a-1+b-2+c-3\right)\)\(\left(a-1\right)^2+\left(b-2\right)^2+\left(c-3\right)^2\)

\(+\left(a-1\right)\left(b-2\right)+\left(a-1\right)\left(c-3\right)+\left(b-2\right)\left(c-3\right)\)]

<=> \(0-3\left(a-1\right)\left(b-2\right)\left(c-3\right)=0\)

( vì \(a-1+b-2+c-3=a+b+c-6=6-6=0\))

<=> \(\left(a-1\right)\left(b-2\right)\left(c-3\right)=0\)

<=>  a = 1 hoặc b = 2 hoặc c = 3.

Không mất tính tổng quát: g/s : a = 1

Khi đó: b + c =5

Ta có:  \(T=\left(b-2\right)^{2n+1}+\left(c-3\right)^{2n+1}\)

\(=\left(b-2+c-3\right).A\)

\(=\left(b+c-5\right).A\)

\(=0.A=0\)

Với \(A=\left(b-2\right)^{2n}-\left(b-2\right)^{2n-1}\left(c-3\right)+\left(b-2\right)^{2n-2}\left(c-3\right)^2-...+\left(c-3\right)^{2n}\)

Tương tự b = 2; c= 3 thì T = 0.

Vậy T = 0.

Phan Linh
Xem chi tiết
zZz Cool Kid_new zZz
3 tháng 4 2019 lúc 11:57

\(B=\frac{2019}{1}+\frac{2018}{2}+\frac{2017}{3}+......+\frac{1}{2019}\)

\(=\left(\frac{2018}{2}+1\right)+\left(\frac{2017}{3}+1\right)+.....+\left(\frac{1}{2019}+1\right)+1\)

\(=\frac{2020}{2}+\frac{2020}{3}+\frac{2020}{4}+.....+\frac{2020}{2019}+\frac{2020}{2020}\)

\(=2020\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+......+\frac{1}{2020}\right)\)

\(=2020A\)

\(\Rightarrow\frac{A}{B}=\frac{A}{2020A}=\frac{1}{2020}\)

Hoàng Thị Hồng Gấm
Xem chi tiết