Cho tam giac ABC vuong tai B. Goi D la trung diem cua canh AC. Tren tia doi cua tia DB lay diem E sao cho DB = DE. Chung minh:
a) tam giac ADE = tam giac CDB
b) AE // BC
c) tam giac ACE vuong
d) EC vuong goc CB
Cho tam giac ABC vuong tai A co AB=AC . Goi D la trung diem cua AC . Tren tia doi cua tia DB lay diem E sao cho DB=DE
a) Chung minh : tam giac ADB=tam giac CDE
b) Tren tia doi cua tia AB lay diem I sao cho AD = AI. chung minh : tam giac CDE = tam giac AIC
c) chung minh CI vuong goc EB
Cho tam giac ABC do AB=AC. Goi M la trung diem cua canhBC
a) Chung minh tam giac ABM=tam giac ACM va AM vuong goc BC
b) Goi D la trung diem cua canh AC. Tren tia BD lay diem E sao cho DB=DE Chung minh tam giac BDA=tam giac EDC vaAB//CE
c) Tren tia doi cua MA lay diem F sao cho M la trung diem AF
e) Chung minh :E, C, F thang hang
Ta có hình vẽ:
a/ Xét tam giác ABM và tam giác ACM có:
AB = AC (GT)
AM: cạnh chung
BM = MC (GT)
Vậy tam giác ABM = tam giác ACM (c.c.c)
Ta có: tam giác ABM = tam giác ACM
=> \(\widehat{AMB}\)=\(\widehat{AMC}\) (2 góc tương ứng)
mà \(\widehat{AMB}\)+\(\widehat{AMC}\)=1800 (kề bù)
=> \(\widehat{AMB}\)=\(\widehat{AMC}\)=900
=> AM \(\perp\)BC (đpcm)
b/ Xét tam giác BDA và tam giác EDC có:
BD = DE (GT)
\(\widehat{BDA}\)=\(\widehat{EDC}\) (đối đỉnh)
AD = DC (GT)
Vậy tam giác BDA = tam giác EDC (c.g.c)
=> \(\widehat{BAC}\)=\(\widehat{DCE}\) (2 góc tương ứng)
Mà 2 góc này đang ở vị trí so le trong
=> AB // CE (đpcm)
c/ Đã vẽ và kí hiệu trên hình
d/ Xét tam giác AMB và tam giác CMF có:
AM = MF (GT)
\(\widehat{AMB}\)=\(\widehat{CMF}\) (đối đỉnh)
BM = MC (GT)
Vậy tam giác AMB = tam giác CMF (c.g.c)
=> \(\widehat{BAM}\)=\(\widehat{MFC}\) (2 góc tương ứng)
Mà 2 góc này đang ở vị trí so le trong
=> AB // CF
Ta có: AB // CE (1)
Ta có: AB // CF (2)
Từ (1),(2) => EC trùng CF hay E,C,F thẳng hàng
cho tam giac ABC tren tia doi cua tia AB lay diem D sao cho AC= AD. tren tia doi cua tia AC lay diem E sao cho AE=AB
a) chung minh tam giac ADE= tam giac ACB
b)goi M la trung diem cua BE chung minh tam giac ABM bang tam giac AEM
c) duong thang AM cat CD tai N. Chung minh AN vuong goc CD
cho tam giac ABC , M la trung diem tren AC . Tren tia doi cua tia MB lay diem D sao cho MD = MB . Ve CE vuong goc AD tai E . Goi F la diem nam tren canh BC sao cho BF = DE . Chung minh rang:
a) tam giac ABC = tam giac CDA
b) AF vuong goc voi Bc
c)M,E,F thang hang
Cho tam giac ABC vuong tai A co goc B = 60° .Ve AH vuong goc voi BC tai H A/Tinh goc HAB B/Tren canh AC lay D sao cho AD=AH .Goi I la trung diem cua canh HD. C/M tam giac AHI= tam giac ADI . Tu do suy ra AI vuong goc voi HD C/Tia AI cat canh HC tai diem K .C/M tam giac AHK=tam giac ADK.Tu do suy ra AB//KD D/Tren tia doi cua tia HA lay E sao cho HE=AH.C/M H la trung diem cua BK va 3 diem D,E,K thang hang
a: \(\widehat{HAB}=90^0-60^0=30^0\)
b: Xét ΔAHI và ΔADI có
AH=AD
HI=DI
AI chung
Do đó: ΔAHI=ΔADI
Ta có: ΔAHD cân tại A
mà AI là đường trung tuyến
nên AI là đường cao
c: Xét ΔAHK và ΔADK có
AH=AD
\(\widehat{HAK}=\widehat{DAK}\)
AK chung
Do đó: ΔAHK=ΔADK
Suy ra: \(\widehat{AHK}=\widehat{ADK}=90^0\)
=>DK//AB
Cho tam giac ABC can tai A. Tren tia doi cua tia BC lay diem D, tren tia doi cua tia CB lay diem E sao cho BD = CE.
a) CM: tam giac ADE can.
b) Goi M la trung diem cua BC. CM: AM la tia phan giac cua goc DAE va AM vuong DE.
c) Tu B ke BH vuong goc AD (H€AD). Tu C ke CK vuong goc AE (K€AE). CM: BH=CK.
d) CM: Ba duong thang AM,BH,CK gap nhau tai mot diem.
Ta có tam giác ABC cân tại A nên góc B=góc C mà góc ABC+ABD=180 độ
góc ACB+ACE=180 độ
=> góc ABD=góc ACE
Xét tam giác ABD và tam giác ACE có
AB=AC (tam giác ABC cân tại A)
góc ABD=góc ACE (cmt)
BD=CE(gt)
=> tam giác ABD=tam giác ACE(c-g-c)
=> AD=AE(cạnh tương ứng)
Vậy tam giác ADE cân và cân tại A
b/ Ta có tam giác ADE là tam giác cân và cân tại A nên góc D=góc E
Xét tam giác AMD và tam giác AME có:
AD=AE(tam giác ADE cân tại A)
góc D=góc E(cmt)
góc AMD=góc AME=90 độ
=> tam giác AMD=tam giác AME(ch-gn)
=> góc DAM=góc EAM(góc tương ứng)
Vậy AM là tia phân giác góc DAE
Cho tam giac ABC ( AB<AC). Tren canh AB lay diem E sao cho AE=AD . Tia phan giac cua goc a cat canh BC tai D . Chung minh : a,tam giac ABD=tam giac AED b,DE=DB c, BE vuong goc voi AD
cho tam giac ABC can tai A( goc A < 900) ve BD vuong goc voi AC, CE vuong goc voi AB. goi H la giao diem cua BD va CE.
a) CM: tam giac ABC= tam giac ACE
b) CM : tam giac AED can
c) CM: AH la duong trung truc cua ED
d) tren tia doi DB lay diem K sao cho DK= DB. CM: tam giac ECB= tam giacDKC
cho tam giac nhon ABC, ve BD vuong goc AC tai D va CE vuong goc AB tai E. Cac duong thang BD va CE cat nhau tai H. Goi diem M la trung diem cua canh CB. Tren tia doi cua tia MH lay diem K sao cho MH=MK. a) chung minh: tam giac BMH=tam giac CMK, b) chung minh: CK vuong goc AC, c) ve HI vuong goc BC tai I, tren tia HI laydiem G sao cho HI=IG. Chung minh: GC=BK