Cho góc xAy khác góc bẹt. Az la tia phân giác của xAy. Trên tia Ax lấy điểm B cố định, lấy điểm C la điểm chuyển động trên đoạn AB. Trên Ay lấy điểm D sao cho DA=BC. Chứng minh rằng đường trung trực của CD luôn đi qua 1 điểm cố định
Cho góc xAy khác góc bẹt, Az là tia phân giác của góc xAy, B là điểm cố định trên Ax, C là điểm chuyển động trên đoạn AB, D là điểm chuyển động trên tia Ay sao cho AD=BC. Chứng minh rằng đường trung trực của CD luôn đi qua một điểm cố định khi C và D chuyển động.
Cho góc xAy khác góc bẹt, Az là tia phân giác của góc xAy, B là điểm cố định trên Ax, C là điểm chuyển động trên đoạn AB, D là điểm chuyển động trên tia Ay sao cho AD=BC. Chứng minh rằng đường trung trực của CD luôn đi qua một điểm cố định khi C và D chuyển động.
Vẽ đường trung trực của AB cắt Az, Ax lần lượt tại M,H
Ta có \(\widehat{DAM}=\widehat{MAB}\)(Az là tia phân giác của góc xAy)
Mà \(\widehat{MBA}=\widehat{MAB}\)(do MH là trung trực của AB)
\(\Rightarrow\widehat{DAM}=\widehat{MBA}\)
Xét \(\Delta ADM\)và \(\Delta BCM\)có:
AD = BC (gt)
\(\widehat{DAM}=\widehat{CBM}\)(cmt)
AM = BM (do MH là trung trực của AB))
Do đó \(\Delta ADM=\Delta BCM\left(c-g-c\right)\)
\(\Rightarrow DM=CM\)(hai cạnh tương ứng)
Khi đó M thuộc đường trung trực của CD
Vậy đường trung trực của CD luôn đi qua một điểm cố định M khi C và D chuyển động (đpcm)
Cho góc xAy khác góc bẹt, Az là tia phân giác của góc xAy, B là điểm cố định trên Ax, C là điểm chuyển động trên đoạn AB, D là điểm chuyển động trên tia Ay sao cho AD=BC. Chứng minh rằng đường trung trực của CD luôn đi qua một điểm cố định khi C và D chuyển động.
Câu hỏi của Hihi - Toán lớp 7 - Học toán với OnlineMath
Cho góc xAy khác 180 độ, Az là tia phân giác của góc xAy. B là điểm cố định trên Ax. C là điểm chuyển động trên Ay, D là điểm chuyển động trên Ay sao cho AD=BC.
Cmr: Đường trung trực của CD luôn đi qua một điểm cố định khi C,D chuyển động
Bài 6: Cho góc xAy. Trên tia Ax lấy điểm B, trên tia Ay lấy điểm C sao cho AB = AC. Lấy điểm M bất kì thuộc đoạn AB (M ≠ A, B). Lấy điểm N thuộc tia Cy sao cho CN = BM (C nằm giữa A và N). Kẻ tia phân giác Az của góc xAy. Đường trung trực của MN cắt tia Az tại O. Chứng minh:
a) Tam giác OAB = Tam giác DOAC
b) Tam giác OBM = Tam giác OCN
c) góc OC vuông góc Ay.
a: Xét ΔOAB và ΔOAC có
OA chung
\(\widehat{BAO}=\widehat{CAO}\)
OB=OC
Do đó: ΔOAB=ΔOAC
b: Xét ΔOBM và ΔOCN có
OB=OC
\(\widehat{OBM}=\widehat{OCN}\)
BM=CN
Do đó: ΔOBM=ΔOCN
Cho góc xAy. Trên tia Ax lấy điểm B, trên tia Ay lấy điểm C sao cho AB = AC. Tia phân giác Az của góc xAy cắt BC tại H.
a) Chứng minh: tam giác AHB = tam giác AHC
b) Chứng minh AH vuông góc BC
c) Lấy điểm I thuộc đoạn thẳng AH, kẻ IM vuông góc Ax, IN vuông góc Ay. So sánh BM và CN?
d) Chứng minh MN//BC
cho xay khác góc bẹt. Trên tia Ax lấy điểm B, trên tia Ay lấy điểm C sao cho AB=AC. Gọi At là tia phân giác của góc xAy, I là giao điểm của At và BC a) Chúng minh tám giác ABI=tam giác ACI b) chúng minh AI vuông góc với BC c) trên tia It lấy D sao cho AI=ID> Chúng minh CD song son với AB
cho xay khác góc bẹt. Trên tia Ax lấy điểm B, trên tia Ay lấy điểm C sao cho AB=AC. Gọi At là tia phân giác của góc xAy, I là giao điểm của At và BC a) Chúng minh tám giác ABI=tam giác ACI b) chúng minh AI vuông góc với BC giúp mk vẽ hình với
cho xay khác góc bẹt. Trên tia Ax lấy điểm B, trên tia Ay lấy điểm C sao cho AB=AC. Gọi At là tia phân giác của góc xAy, I là giao điểm của At và BC a) Chúng minh tám giác ABI=tam giác ACI b) chúng minh AI vuông góc với BC Giúp mhinhf với
*Tự vẽ hình
a) Xét tam giác ABI và ACI có :
AC=AB(GT)
\(\widehat{CAI}=\widehat{IAB}\left(GT\right)\)
AI-cạnh chung
-> Tam giác ABI=ACI ( c.g.c )
b) Do tam giác ABI=ACI (cmt)
-> \(\widehat{AIB}=\widehat{AIC}=90^o\)
-> AI vuông góc với BC
#Hoctot
Cảm ơn bạn đx giúp mình bạn có thế vẽ hình cho mk được không