Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
An Nhâm
Xem chi tiết
Huy Hoang
15 tháng 7 2020 lúc 15:56

1 2 1 2 3 4 B I C O A O'

a) Theo tính chất hai tiếp tuyến cắt nhau ta được IA = IB, IA = IC .

Tam giác ABC có đường trung tuyến \(AI=\frac{1}{2}BC\)nên là tam giác vuông

Vậy \(\widehat{BAC}=90^o\left(đpcm\right)\)

b) Theo tính chất hai tiếp tuyến cắt nhau ta có IO, IO' là các tia phân giác của hai góc kề bù AIB, AIC nên :

\(\widehat{OIO'}=\widehat{OIA}+\widehat{O'IA}=\frac{1}{2}\widehat{AIB}+\frac{1}{2}\widehat{AIC}=\frac{1}{2}\left(\widehat{AIB}+\widehat{AIC}\right)\)

Vậy : \(\widehat{OIO'}=90^o\)

c) \(\Delta OIO'\) vuông tại A có IA là đường cao nên theo hệ thức giữa cạnh và đường cao ta có:

    IA2 = AO.AO' = 9 . 4 = 36

=> IA = 6 ( cm )

Vậy BC = 2 . IA = 2 . 6 = 12 (cm)

Khách vãng lai đã xóa
Adu vip
Xem chi tiết
ngoc nguyen
Xem chi tiết
Phan Thị Hà Vy
Xem chi tiết
Nguyễn Tũn
14 tháng 8 2018 lúc 13:21

dễ ẹc!!!!!!!!

Hn . never die !
1 tháng 5 2020 lúc 21:16

Trả lời :

Bn Nguyễn Tũn bảo dễ ẹt thì làm đi.

- Hok tốt !

^_^

Khách vãng lai đã xóa
❤️ HUMANS PLAY MODE ❤️
1 tháng 5 2020 lúc 21:19

dễ ẹc thì lm cho mk coi đi

mk ko bt lm

Khách vãng lai đã xóa
Adu vip
Xem chi tiết
Vanh Le
Xem chi tiết
Thanh Mai
Xem chi tiết

Do \(OB=OE=R\Rightarrow\Delta OBE\) cân tại O

Mà \(OH\perp BE\) (giả thiết) \(\Rightarrow OH\) là đường cao đồng thời là trung trực của BE

Hay OA là trung trực của BE

\(\Rightarrow AB=AE\)

Xét hai tam giác OAB và OAE có: \(\left\{{}\begin{matrix}OB=OE=R\\AB=AE\left(cmt\right)\\OA\text{ chung}\end{matrix}\right.\) \(\Rightarrow\Delta OAB=\Delta OAE\left(c.c.c\right)\)

\(\Rightarrow\widehat{AEO}=\widehat{ABO}=90^0\Rightarrow AE\) là tiếp tuyến của (O)

loading...

Bình Phan
Xem chi tiết
ミ★Zero ❄ ( Hoàng Nhật )
6 tháng 3 2023 lúc 16:05

Hình bạn tự vẽ nhé 

Ta có KB , KC là tiếp tuyến của (O)

= > \(KB\perp OB,OK\perp BC\) 

Ta có \(KH\perp AO\) \(\Rightarrow\widehat{KHO}=\widehat{AMO}=90^0\left(KO\perp BC\right)\)

\(\Rightarrow\Delta OMA\sim\Delta OHK\left(g.g\right)\)

\(\Rightarrow\dfrac{OM}{OH}=\dfrac{OA}{OK}=>OM.OK=OH.OA\)

Mà \(KO\perp BC,OB\perp KB=>OB^2=OM.OK=> OH.OA=OB^2\)

\(=OE^2\left(OE=OB\right)\)

\(\Rightarrow\dfrac{OE}{OH}=\dfrac{OA}{OE}=>\Delta OEH\sim\Delta OAE\left(c.g.c\right)\)

\(=>\widehat{OEA}=\widehat{OHE}=90^0\) hay AE là tiếp tuyến của ( O )

Mon an
Xem chi tiết
Nguyễn Lê Phước Thịnh
30 tháng 11 2023 lúc 22:53

c: Xét (O) có

M,O,N thẳng hàng

=>MN là đường kính của (O)

OA là đường trung trực của BC(cmt)

=>OA\(\perp\)BC tại H và H là trung điểm của BC

\(\widehat{HCM}+\widehat{HMC}=90^0\)(ΔHMC vuông tại H)

\(\widehat{ACM}+\widehat{OCM}=\widehat{OCA}=90^0\)

mà \(\widehat{OCM}=\widehat{HMC}\)(ΔOMC cân tại O)

nên \(\widehat{HCM}=\widehat{ACM}\)

=>CM là phân giác của góc ACB(5)

Xét (O) có

ΔNCM nội tiếp

NM là đường kính

Do đó: ΔNCM vuông tại C

=>CM\(\perp\)CN(6)

Từ (5),(6) suy ra CN là phân giác góc ngoài tại đỉnh C của ΔACH

Xét ΔACH có CN là phân giác góc ngoài tại đỉnh C

nên \(\dfrac{CA}{CH}=\dfrac{NA}{NH}\left(7\right)\)

Xét ΔACH có CM là phân giác góc trong tại đỉnh C

nên \(\dfrac{CA}{CH}=\dfrac{MA}{MH}\left(8\right)\)

Từ (7) và (8) suy ra \(\dfrac{NA}{NH}=\dfrac{MA}{MH}\)

=>\(NA\cdot MH=NH\cdot MA\)

 

Thiên Vũ Lê
Xem chi tiết
Nguyễn Lê Phước Thịnh
3 tháng 1 2022 lúc 22:03

Xét (O) có

AB là tiếp tuyến

AC là tiếp tuyến

Do đó: AB=AC

hay A nằm trên đường trung trực của BC(1)

Ta có: OB=OC

nên O nằm trên đường trung trực của BC(2)

Từ (1) và (2) suy ra OA là đường trung trực của BC

=>AI là đường trung trực của BC

=>IB=IC