Tìm a,b để
2x3 + 3x2 + ax + b chia hết cho (x+1).(x-1)x3 - 4x2+ ax + b chia hết cho x2 - 3x + 2Xác định số hữu tỉ a, b sao cho:
a) 2x2 + ax - 4 chia hết cho x + 4
b) x4 - 3x3 + 3x2 + ax + b chia hết cho x2 - 3x - 4
c) 3x2 + ax + 27 chia cho x + 5 thì dư 27
d) x3 + ax + b chia cho x + 1 thi dư 7, chia cho x - 3 thì dư 5.
a: \(\Leftrightarrow2x^2+8x+\left(a-8\right)x+4\left(a-8\right)-4a+28⋮x+4\)
hay a=7
Tìm a sao cho biểu thức A chia hết cho B(tìm a sao cho A:B ∈ Z)
1)A=x3-3x2-ax+3;B=x-1
2)A=3x3-16x2+25x+a;B=x2-4x+3
3)A=x4-x3+6x2-x+a;B=x2-x+5
\(1,A⋮B\Leftrightarrow x^3-3x^2-ax+3=\left(x-1\right)\cdot a\left(x\right)\)
Thay \(x=1\)
\(\Leftrightarrow1-3-a+3=0\\ \Leftrightarrow a=1\)
\(2,A⋮B\Leftrightarrow3x^3-16x^2+25x+a=\left(x^2-4x+3\right)\cdot b\left(x\right)\\ \Leftrightarrow3x^3-16x^2+25x+a=\left(x-3\right)\left(x-1\right)\cdot b\left(x\right)\)
Thay \(x=1\)
\(\Leftrightarrow3-16+25+a=0\\ \Leftrightarrow a=-12\)
Thay \(x=3\)
\(\Leftrightarrow3\cdot27-16\cdot9+25\cdot3+a=0\\ \Leftrightarrow81-144+75+a=0\\ \Leftrightarrow12+a=0\Leftrightarrow a=-12\)
Vậy \(a=-12\)
a) Tìm a để đa thức x3+x2-x+a chia hết cho đa thức x+2
b) Tìm a và b để đa thức x3+ax2+2x+b chia hết cho đa thức x2+x+1
c) Tìm a và b để đa thức x3+4x2+ax+b chia hết cho đa thức x2+x+1
em mong mọi người giúp đỡ em cảm ơn ạ
a) Tìm a sao cho đa thức A = x3 + x2 + ax - 1 chia hết cho B = x - 1.
theo bezout ta có A \(⋮\) B \(\Leftrightarrow\) A(x=1) = 0
\(\Leftrightarrow\) 13 + 12 + a - 1 = 0
1 + a = 0
a = -1
Với a = -1 thì A chia hết cho B
a, 27x^2+a chia hết cho (3x+2)
b, x^4+ax^2+1 chia hết cho x^2 +2x+1
c, 3x^2+ax+27 chia cho x+5 có số dư bằng 2
Bài 2: Tìm a, b sao cho:
a, x^4+ax^2+b chia hết cho x^2+x+1
b, ax^3+bx-24 chia hết cho (x-1)(x+3)
c, x^4-x^3-3x^2+ax+b chia cho x^2-x-2 dư 2x-3
d, 2x^3+ax+b chia cho x+1 dư -6, chia cho x-2 dư 21.
Bài 1:
a) (27x^2+a) : (3x+2) được thương là 9x - 6, dư là a + 12.
Để 27x^2+a chia hết cho (3x+2) thì số dư a+12 =0 suy ra a = -12.
b, a=-2
c,a=-20
Bài2.Xác định a và b sao cho
a)x^4+ax^2+1 chia hết cho x^2+x+1
b)ax^3+bx-24 chia hết cho (x+1)(x+3)
c)x^4-x^3-3x^2+ax+b chia cho x^2-x-2 dư 2x-3
d)2x^3+ax+b chia cho x+1 dư -6, x-2 dư 21
Giải
a) Đặt thương của phép chia x^4+ax^2+1 cho x^2+x+1 là (mx^2 + nx + p) (do số bị chia bậc 4, số chia bậc 2 nên thương bậc 2)
<=> x^4 + ax^2 + 1 = (x^2+ x+ 1)(mx^2 + nx + p)
<=> x^4 + ax^2 + 1 = mx^4 + nx^3 + px^2 + mx^3 + nx^2 + px + mx^2 + nx + p (nhân vào thôi)
<=> x^4 + ax^2 + 1 = mx^4 + x^3(m + n) + x^2(p + n) + x(p + n) + p
Đồng nhất hệ số, ta có:
m = 1
m + n = 0 (vì )x^4+ax^2+1 không có hạng tử mũ 3 => hê số bậc 3 = 0)
n + p = a
n + p =0
p = 1
=>n = -1 và n + p = -1 + 1 = 0 = a
Vậy a = 0 thì x^4 + ax^2 + 1 chia hết cho x^2 + 2x + 1
Mấy cái kia làm tương tự, có dư thì bạn + thêm vào, vd câu d:
Đặt 2x^3+ax+b = (x + 1)(mx^2 + nx + p) - 6 = (x - 2)(ex^2 + fx + g) + 21
b) f(x)=ax^3+bx-24; để f(x) chia hết cho (x+1)(x+3) thì f(-1)=0 và f(-3)=0
f(-1)=0 --> -a-b-24=0 (*); f(-3)=0 ---> -27a -3b-24 =0 (**)
giải hệ (*), (**) trên ta được a= 2; b=-26
c) f(x) =x^4-x^3-3x^2+ax+b
x^2-x-2 = (x+1)(x-2). Gọi g(x) là thương của f(x) với (x+1)(x-2). Khi đó:
f(x) =(x+1)(x-2).g(x) +2x-3
f(-1) =0+2.(-1)-3 =-5; f(2) =0+2.2-3 =1
Mặt khác f(-1)= 1+1-3-a+b =-1-a+b và f(2)=2^4-2^3-3.2^2+2a+b = -4+2a+b
Giải hệ: -1-a+b=-5 và -4+2a+b =1 ta được a= 3; b= -1
d) f(x) =2x^3+ax+b chia cho x+1 dư -6, x-2 dư 21. vậy f(-1)=-6 và f(2) =21
f(-1) = -6 ---> -2-a+b =-6 (*)
f(2)=21 ---> 2.2^3+2a+b =21 ---> 16+2a+b=21 (**)
Giải hệ (*); (**) trên ta được a=3; b=-1
Bài 1 : Tìm a để (5x3 - 3x2 + 2x +a) chia hết cho ( x +1)
Bài 2 : Tìm a để phép chia sau là phép chia hết :
a) ( x3 - x2 + 2x + a) chia hết cho x -1
b) x3 -2x2 -2x + a chia hết cho x +1
Bài 3 Tìm các giá trị a , b ,k để đa thức f(x) chia hết cho đa thức g(x)
a) f(x)= x4 -9x3 + 21x2 + x +k ; g (x) = x2 - x -2
b) f(x) = x4 - 3x3 + 3x2 + ax + b ; g(x) = x2 - 3x +4
Bài 1:
Ta có: \(5x^3-3x^2+2x+a⋮x+1\)
\(\Leftrightarrow5x^3+5x^2-8x^2-8x+10x+10+a-10⋮x+1\)
\(\Leftrightarrow a-10=0\)
hay a=10
b) Thực hiện phép chia đa thức (2x4 – 5x3 + 2x2 +2x - 1) cho đa thức (x2 – x - 1)
Bài 2:
a) Tìm a để đa thức (2x4 + x3 - 3x2 + 5x + a) chia hết cho đa thức (x2 - x +1)
b) Tìm a để đa thức x^4 - x^3 + 6x^2 chia hết cho đa thức x^2 - x + 5
b: \(=\dfrac{2x^4-2x^3-2x^2-3x^3+3x^2+3x+x^2-x-1}{x^2-x-1}\)
\(=2x^2-3x+1\)
1. a, tìm a để x^2 + ax^2 + 5x +3 chia hết cho x^2 + 2x + 3
b, tìm a,b để 2x^3 - x^2 + ax + b chia hết cho x^2 - 1
c, tìm a, b để 3x^3 + ax^2 + bx + 9 chia hết cho x^2 - 9
giúp mình nha, cần gấp