cmr số chính phương lớn hơn 100 có chữ số tận cùng là số 5 thì chữ số hàng trăm là số chẵn
CMR 1 số chính phương có tận cung là 5 thì chữ số hàng chục là chữ số 2
CMR 1 số chính phương có tân cùng là 6 thì chữ số hàng chục là chữ số lẻ
CMR 1 số chính phương có tận cùng là 4 thì chữ số hàng chục là chữ số chẵn
CMR 1 số chính phương có tận cùng là 0 thì tận cùng bằng chẵn chữ số 0
Lời giải:
1.
Gọi số chính phương có tận cùng là $5$ là $a^2$. Khi đó $a$ cũng phải có tận cùng là $5$
Đặt \(a=\overline{A5}\)
\(\Leftrightarrow a^2=(\overline{A5})^2=(10A+5)^2=100A^2+100A+25\)
\(\Rightarrow a^2\) chia $100$ dư $25$ nên $a^2$ có tận cùng là $25$ hay chữ số hàng chục là $2$
--------------------
2.
Giả sử tồn tại số chính phương $a^2$ có tận cùng là $6$ và chữ số hàng chục là số chẵn.
Khi đó, $a^2$ có thể có tận cùng là $06,26,46,...,86$ $\rightarrow a^2$ không chia hết cho $4$ (1)
Mà $a^2$ có tận cùng bằng $6$ $\rightarrow a^2$ là scp chẵn, $\rightarrow a$ chẵn, $\rightarrow a.a=a^2$ chia hết cho $4$ (mâu thuẫn với (1))
Do đó không tồn tại số cp có tận cùng bằng $6$ mà chữ số hàng chục chẵn. Hay 1 số cp có tận cùng là 6 thì chữ số hàng chục là lẻ.
3.
Giả sử tồn tại số chính phương $a^2$ có tận cùng là $4$ mà chữ số hàng chục lẻ.
Khi đó $a^2$ có thể có tận cùng $14,34,...,94$. Những số trên đều không chia hết cho $4$ nên $a^2$ không chia hết cho $4$ (1)
Mà $a^2$ tận cùng là $4$ nên $a^2$ là scp chẵn. Do đó $a$ chẵn hay $a\vdots 2$
$\rightarrow a^2=a.a\vdots 4$ (mâu thuẫn với (1))
Do đó không tồn tại scp có tận cùng bằng 4 mà chữ số hàng chục lẻ. Hay một số cp có tận cùng là 4 thì chữ số hàng hàng chục là số chẵn.
-----------------
4.
Gọi $a^2$ là scp có tận cùng $n$ chữ số $0$. Khi đó $a$ cũng phải có tận cùng bẳng $0$
Đặt \(a^2=(\overline{A0...0})^2\) ($n$ chữ số 0)
\(=(10^nA)^2=10^{2n}A^2=A^2.10...0\) ($n$ chữ số 0)
Hay $a^2$ có tận cùng là $2n$ chữ số $0$. $2n$ là số chẵn nên $a^2$ có lượng chẵn chữ số 0 tận cùng (đpcm)
1, CMR 1 số chính phương có tận cùng là 0 thì phải tận cùng là chẵn chữ số 0
2, CMR 1 số chính phương tận cùng là 5 thì có chữ số hàng chục là chữ số 2
CMR: 1 số chính phương có tận cùng bằng a thì chữ số hàng chục là chữ số chẵn.
CMR: 1 số chính phương có tận cùng bằng 4 thì chữ số hàng chục là chữ số chẵn
CMR:1 số chính phương có tận cùng bằng 4 thì chữ số hàng chục là chữ số chẵn
CMR: 1 số chính phương có tận cùng bằng a thì chữ số hàng chục là chữ số chẵn.
Câu 1 : Chứng minh một số chính phương có tận cùng là 0 thì phải tận cùng bằng chẵn chữ số 0.
Câu 2 : Chứng minh một số chính phương có số ước là một số lẻ và ngược lại .
Câu 3 : Chứng minh rằng một số chính phương có tận cùng là 5 thì chữ số hàng chục là chữ số 2.
Câu 4 : Chứng minh rằng một số chính phương có tận cùng là 6 thì chữ số hàng chục là chữ số lẻ.
Câu 5 : Chứng minh rằng một số chính phương có tận cùng là 4 thì chữ số hàng chục là chữ số chẵn.
CMR một số chính phương tận cùng bằng 4 thì chữ số hàng chục của nó là chữ số chẵn
một số chính phương có tận cùng là 21 .Chữ số hàng trăm của nó là chẵn hay lẻ?
sô Z chính Phường Tận cùng là 21 =>A=\(\sqrt{Z}\) có dạng a9 hoặc a1
TH1:A có dạng (a9)=>A^2=10a+9=100a^2+180.a+81=100a^2+100a+80a+81
để chữ số hàng chục =2=> 8.a+8=10t+2=> 8a=10t-6
\(a=\frac{10t-6}{8}\Rightarrow a=5n+3\)
\(0\le a\le9\Rightarrow0\le n\le1\) \(\Rightarrow t=\left\{0,1\right\}\Rightarrow a=\left(3,8\right)\)
a9=39 hoạc 89 có 39*39=1521 và 89*89=7921 hàng trăm lẻ =>Hàng trăm của A lẻ
TH2. A có dạng a1=>A^2=10a+1=100a^2+20.a+1 => 2a=10t+2=> a=1
11^2=121 hàng trăm cũng lẻ => hàng trăm của A lẻ
KL: lẻ
Cách làm có vẻ chưa đươc tối ưu lăm nhưng. có gì nghiên cuu tiếp