Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Đặng Tuấn Anh
Xem chi tiết
Mai Thanh Tâm
Xem chi tiết
Minh Nguyệt
Xem chi tiết
Đinh Đức Hùng
6 tháng 2 2018 lúc 16:58

Xét n = 3k + 1 với k nguyên ta có :

\(P=3^{2\left(3k+1\right)}+3^{3k+1}+1=9^{3k+1}+3^{3k+1}+1\)

\(=9^{3k+1}-9+27^k.3-3+13\)\(=9\left(729^k-1\right)+3\left(27^k-1\right)+13\)

Ta có : \(\left(729^k-1\right)⋮\left(729-1\right)⋮13\forall x\in Z\) và \(\left(27^k-1\right)⋮\left(27-1\right)⋮13\forall x\in Z\)

\(\Rightarrow9\left(729^k-1\right)+3\left(27^k-1\right)+13⋮13\)

Hay P chia hết cho 13

Xét tương tự với \(n=3k+2\) ta có đpcm

Miriki Chishikato
Xem chi tiết
Phùng Minh Quân
6 tháng 8 2019 lúc 21:08

Giả sử trong hai số a, b không đồng thời chia hết cho 3 

=> a+b không chia hết cho 3 => m+2n+n+2m=3(m+n) không chia hết cho 3 ( vô lí ) 

=> điều giả sử sai => đpcm 

Nguyễn Hoàng Ngân
Xem chi tiết
Nguyễn Trần Lam Trúc
Xem chi tiết
Trên con đường thành côn...
7 tháng 8 2021 lúc 20:33

undefined

Nguyễn Lê Phước Thịnh
7 tháng 8 2021 lúc 23:05

Bài 1: 

b) Ta có: \(\left(2n-3\right)\left(2n+3\right)-4n\left(n-9\right)\)

\(=4n^2-9-4n^2+36n\)

\(=36n-9⋮9\)

Mai Diễm My
Xem chi tiết
Đỗ Ngọc Diệp
24 tháng 2 2018 lúc 16:54
ta có: A=3^ 2n + 3^n + 1
n không chia hết cho 3 nên ta xét 2 trường hợp:
n =3k +1:
A = 3^ (6k + 3) + 3^(3k +1) +1= 9.27^2k +3.27^ +1
= 9.(26+1)^2k + 3.(26 +1)^k +1
= 9(2.13 +1)^2k + 3.(2.13 +1)^k +1
A đồng dư với (9 +3 +1)= 13 theo đồng dư 0 theo (dư 13)
vậy A chia hết cho 13.
( Mình giải thích thêm nhé:
(2.13 +1)^2k chia cho 13 dư 1
=> 9(2.13 +1)^2k chia cho 13 dư 9
(2.13 +1)^k chia 13 dư 1
=> 3.(2.13 +1)^k chia 13 dư 1
=> A chia 13 dư 9 + 3 +1 = 13
A = 13.k +13 với k nguyên
A/13 = k + 1 la số nguyên => A chia hết cho 13
khi triển khai (x+1)^n = thì các hạng tử đều chứa x trừ hạng tử cuối = 1 nên (x+1)^n chia cho x dư 1.)
* n = 3k +2:
A = 3^(6k +4) + 3^(6k +2) +1=81.27^2k +9.27^k +1
= 81.(2.13+1)^2k + 9(2.13 +1)^k +1
A đồng dư với ( 81 + 9 +1) = 91 đồng dư 0 theo (mod 13)
vậy A chia hết cho 13
=> đpcm
Đức Lộc
Xem chi tiết
Kiệt Nguyễn
25 tháng 3 2019 lúc 20:01

Câu hỏi của Minh Nguyệt - Toán lớp 8 - Học toán với OnlineMath

Bạn tham khảo.

Lương Minh Nhật
Xem chi tiết