Giải bài toán Chứng minh định lí Nếu n là số tự nhiên lẻ thì (n^2 -1) chia hết cho 8
chứng minh với mọi số tự nhiên n, nếu n là số lẻ thì n^2 -1 chia hết cho 8
Vì n là số lẽ nên ta có : \(n=2k+1\left(k\in N\right)\). Thay vào :
\(\left(2k+1\right)^2-1=4k^2+4k+1-1=4k^2+4k=4k\left(k+1\right)\)
4 chia hết cho 4 ; \(k\left(k+1\right)\)là 2 số tự nhiên liên tiếp nên chia hết cho 2 \(\Rightarrow\left(2k+1\right)^2-1\) chia hết cho 8 (vì 4.2=8).
Vậy với mọi số tự nhiên n, nếu n là số lẽ thì \(n^2-1\) chia hết cho 8.
chứng minh định lí sau bằng phản chứng:
"nếu n là số tự nhiên và n^2 chia hết cho 5 thì n chia hết cho 5"
Bài toán 1 : Chứng minh rằng mọi số nguyên tố p ta có thể tìm được một số được viết bởi hai chữ số chia hết cho p.
Bài toán 2 : Chứng minh rằng nếu một số tự nhiên không chia hết cho 2 và 5 thì tồn tại bội của nó có dạng : 111...1.
Bài toán 3 : Chứng minh rằng tồn tại số có dạng 1997k (k thuộc N) có tận cùng là 0001.
Bài toán 4 : Chứng minh rằng nếu các số nguyên m và n nguyên tố cùng nhau thì tìm được số tự nhiên k sao cho mk - 1 chia hết cho n
1) Chứng minh rằng tổng n số tự nhiên liên tiếp chia hết cho n nếu n là số lẻ ?
2) Chứng minh tổng n số tự nhiên liên tiếp không chia hết cho n nếu n là số chẵn ?
Bài 1 :
Nếu n lẻ thì n + 1 chẵn do đó tổng n số tự nhiên liên tiếp là \(\frac{n.\left(n+1\right)}{2}\) là số chẵn nên không chia hết cho n vì n là số lẻ
Bài 2 :
Nếu n chẵn thì n + 1 lẻ do đó tổng n số tự nhiên liên tiếp là \(\frac{n.\left(n+1\right)}{2}\) là số chẵn nên chia hết cho n vì n là số chẵn
1. Chứng minh rằng N Không chia hết cho 7 thì n^ 2 cộng 1 hoặc n^3 - 1 chia hết cho 7
2. Chứng minh rằng với mọi số tự nhiên N lẻ thì
(n >1) 13 lần số chia hết cho 8
3. Chứng minh rằng 2^4.n -1 chia hết cho 15. Giải nhanh giúp mình với để cho minh nộ bài nhé các bạn
Chứng minh các định lí sau đây bằng phương pháp phản chứng:
a) Nếu a + b < 2 thì một trong hai số a và b phải nhỏ hơn 1;
b) Cho n là số tự nhiên, nếu 5n + 4 là số lẻ thì n là số lẻ.
a) Giả sử ngược lại rằng a ≥ 1 và b ≥ 1. Ta suy ra a + b ≥ 2.
Điều này mâu thuẫn với giả thiết a + b < 2. Vậy một trong hai số a và b phải nhỏ hơn 1.
b) Giả sử ngược lại rằng n là số tự nhiên chẵn, n = 2k (k ∈ N). Khi đó 5n + 4 = 10k + 4 = 2(5k + 2) là một số chẵn. Điều này mâu thuẫn với 5n + 4 là số lẻ. Vậy nếu 5n + 4 là số lẻ thì n là số lẻ.
a) Giả sử ngược lại rằng a ≥ 1 và b ≥ 1. Ta suy ra a + b ≥ 2. Điều này mâu thuẫn với giả thiết a + b < 2.
Vậy một trong hai số a và b phải nhỏ hơn 1.
b) Giả sử ngược lại rằng n là số tự nhiên chẵn, n = 2k (k ∈ N). Khi đó 5n + 4 = 10k + 4 = 2(5k + 2) là một số chẵn. Điều này mâu thuẫn với 5n + 4 là số lẻ.
Vậy nếu 5n + 4 là số lẻ thì n là số lẻ.
chứng tỏ rằng nếu n là số tự nhiên lẻ thì t=n^2+4*n+5 không chia hết cho 8
Đây là toán lớp 10, bạn nào làm được làm giúp mình với, chứng minh xuôi ngược luôn nha, làm ơn giúp mình trước thứ 7
Bài 1: Cho n là số tự nhiên
a) n lẻ <=> (n^2 + 7 ) chia hết cho 8
b) n chẵn <=> ( n^3 - 4n ) chia hết cho 48
c) n lẻ <=> ( n^2 - 4n +3 ) chia hết cho 8
d) n lẻ <=> (n^2 + 4n + 5 ) không chia hết cho 8
Bài 2: chứng minh rằng 1 trong 2 phương trình sau có nghiệm
x^2 - 2mx - 2m + 2 = 0 (1)
x^2 + ( m - 1)x + m - 1 = 0 (2)
Hôm nay thứ 7 rồi
Dê !!!? - Khỏi làm ???!
B1 a, Có n lẻ nên n = 2k+1(k E N)
Khi đó: n^2 + 7 = (2k+1)^2 +7
= 4k^2 + 4k + 8
= 4k(k+1) +8
Ta thấy k và k+1 là 2 số tự nhiên liên tiếp nên có ít nhất 1 số chia hết cho 2
=> k(k+1) chia hết cho 2 <=> 4k(k+1) chia hết cho 8
Mà 8 chia hết cho 8 <=> n^2 + 7 chia hết cho 8
Chứng minh: Với mọi số tự nhiên n lẻ thì (n2-1) chia hết cho 8
Ta có : n là số tự nhiên lẻ => n = 2k+1 (\(k\in N^{\text{*}}\))
\(n^2-1=\left(2k+1\right)^2-1=4k^2+4k+1-1=4k\left(k+1\right)\)
Vì k(k+1) là tích của hai số tự nhiên liên tiếp nên chia hết cho 2.
Do đó : 4k(k+1) chia hết cho 2.4=8