tìm x, y
x+Y+z =6 và 2x+3Y+4Z=20
Tìm x,y,z biết:
Tìm x,y,z biết:
a) 7x-2y=5x-3y và 2x+3y=20
b) 2x=3y=4z-2y và x+y+z=45
c) 3x=4y-2x=7z-4y và x+y-2z=10
a.
$7x-2y=5x-3y$
$\Leftrightarrow 2x=-y$. Thay vào điều kiện số 2 ta có:
$-y+3y=20$
$2y=20$
$\Rightarrow y=10$.
$x=\frac{-y}{2}=\frac{-10}{2}=-5$
b.
$2x=3y\Rightarrow \frac{x}{3}=\frac{y}{2}$
$3y=4z-2y\Rightarrow 5y=4z\Rightarrow \frac{y}{4}=\frac{z}{5}$
$\Rightarrow \frac{x}{6}=\frac{y}{4}=\frac{z}{5}$
Áp dụng tính chất dãy tỉ số bằng nhau:
$\frac{x}{6}=\frac{y}{4}=\frac{z}{5}=\frac{x+y+z}{6+4+5}=\frac{45}{15}=3$
$\Rightarrow x=6.3=18; y=4.3=12; z=5.3=15$
c.
$3x=4y-2x$
$\Rightarrow 5x=4y\Rightarrow x=\frac{4}{5}y$
$3x=7z-4y$
$\Leftrightarrow \frac{12}{5}y=7z-4y$
$\Leftrightarrow \frac{32}{5}y=7z\Rightarrow z=\frac{32}{35}y$
Khi đó:
$x+y-2z=10$
$\frac{4}{5}y+y-2.\frac{32}{35}y=10$
$y.\frac{-1}{35}=10$
$y=-350$
$x=\frac{4}{5}y=\frac{4}{5}.(-350)=-280$
$z=\frac{32}{35}y=\frac{32}{35}.(-350)=-320$
tìm x,y,z biết
6) x=3y=2z và 2x-3y+4z=48
7) 2x=3y=-2z và 2x-3y+4z=48
\(x=3y=2z\)
\(\Rightarrow\frac{x}{1}=\frac{y}{2}=\frac{z}{3}\)
\(\Rightarrow\frac{2x}{2}=\frac{3y}{6}=\frac{4z}{12}=\frac{2x-3y+4z}{2-6+12}=\frac{48}{8}=6\)
Rồi thế vào là ra thôi :
\(\frac{2x}{2}=6\Rightarrow x=..........\)
Rồi tương tự thôi
tìm x,y,z biết
6) x=3y=2z và 2x-3y+4z=48
7) 2x=3y=-2z và 2x-3y+4z=48
6)
\(x=3y=2z\)
\(\Rightarrow\frac{x}{6}=\frac{y}{2}=\frac{z}{3}\)
\(\Rightarrow\frac{2x}{12}=\frac{3y}{6}=\frac{4z}{12}\)
Áp dụng tc của dãy tỉ số bằng nhau ta có
\(\frac{2x}{12}=\frac{3y}{6}=\frac{4z}{12}=\frac{2x-3y+4z}{12-6+12}=\frac{48}{18}=\frac{24}{9}\)
\(\Rightarrow\begin{cases}x=16\\y=\frac{16}{3}\\z=8\end{cases}\)
7)
\(2x=3y=-2z\)
\(\Rightarrow\frac{2x}{1}=\frac{3y}{1}=\frac{-4z}{2}\)
Áp dụng tc của dãy tỉ số bằng nhau ta có
\(\frac{2x}{1}=\frac{3y}{1}=\frac{-4z}{2}=\frac{2x-3y-\left(-4z\right)}{1-1-2}=\frac{48}{-2}=-24\)
\(\Rightarrow\begin{cases}x=-12\\y=-8\\z=12\end{cases}\)
6) *2x - 3y + 4z = 48
<=> 4z -2z +4z = 48
=> ( 4-2+4)z = 48
=> z=8 => 2z= 16
* 2x -3y + 4z =48
<=> 6y - 3y +6y =48
=> (6 - 3+ 6)y = 48
=> y= \(\frac{16}{3}\) => 3y = 16
* 2x - 3y + 4z =48
<=> 2x -x + 2x = 48
=> ( 2 -1 +2)x =48
=>x= 16
Tìm x, y, z biết
a) 2x=3y-2x và x+y= 12
b) 7x-2y=5x-3y và 2x=3y=20
c) 2x=3y=4z-2y và x+y+z=35
d)3x=4y-2x=7z-4y và x+y-2z=10
Bài 1. Tìm các số x, y, z, biết rằng 1. x/20 = y/9 = z/6 và x − 2y + 4z = 13; 2. x 3 = y 4 , y 5 = z 7 và 2x + 3y − z = 186. 3. x 2 = 2y 5 = 4z 7 và 3x + 5y + 7z = 123; 4. x 2 = 2y 3 = 3z 4 và xyz = −108.
1)x/2=y/3=z/-4 và 3x-2z=99
2)x/2=y/3=z/6 và 4y-3x=66
3)x/4=y/3 và 3y=5z và x-y-z=100
4)x/5=y/3=z/2 và 2x-3y=100
5)x/5=y/2 và xy=90
6)x/4=y/5 và xy=20
7)x/2=y=2/3 và 3x-2y+4z=16
8)x=y/6=z/3 và 2x-3y+4z=-24
tìm x,y,z biết :
a) x/-10=y/6=z/3 và 2x+3y-2z=16
b)x=y/6=z/3 và 2x-3y+4z= -24
c)x/2=y/3=z/4 và x+z=18
x+1/2=y+3/4=z+5/6 và 2x+3y+4z=9. Tìm x; y ; z
áp dụng tính chất của dãy tỉ số bằng nhau ta có:
\(\frac{x+1}{2}=\frac{y+3}{4}=\frac{z+5}{6}=\frac{2.\left(x+1\right)+3.\left(y+3\right)+4.\left(z+5\right)}{2.2+3.4+4.6}\)
\(=\frac{2x+2+3y+9+4z+20}{40}=\frac{9+31}{40}=1\)
suy ra:
\(\frac{x+1}{2}=1\Rightarrow x+1=2\Rightarrow x=1\)
\(\frac{y+3}{4}=1\Rightarrow y+3=4\Rightarrow y=1\)
\(\frac{z+5}{6}=1\Rightarrow z+5=6\Rightarrow z=1\)
Vậy x=y=z=1
Bài 1 :
a )2x = 3y = 4z và x+y-z=21
b) x= 2y; 3y = 4z và x + y+z = 60
c) x, y, z tỉ lệ với 2 ; (-3); 4 và x-y=20
a)ta có:2x = 3y = 4z=>2x/12 = 3y/12 = 4z/12 =>x/6 = y/4 = z/3 áp dụng tính chất của dãy tỷ số bằng nhau ta có: x/6 = y/4 = z/3=x+y-z/6+4-3=21/7=3 suy ra: x=6*3=18 y=4*3=12 z=3*3=9
c ) =>x/2 = y/(-3) = z/4 áp dụng tính chất của dãy tỷ số bằng nhau ta có: x/2 = y/(-3) = z/4=>x-y/2-(-3) = 20/-5 = -4 suy ra: x=2*(-4)=-8
y=(-3)*(-4)=12
z=4*(-4)=-16
Lm đc mỗi câu a,c =((
2-(-3) = 5 nhé Kim Ngân =))