Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
TXT Channel Funfun
Xem chi tiết
Nguyễn Khánh Linh
Xem chi tiết
l҉o҉n҉g҉ d҉z҉
16 tháng 10 2020 lúc 21:35

8a3 - 36a2b + 54ab2 - 27b3 - 8 

= ( 8a3 - 36a2b + 54ab2 - 27b3 ) - 8 

= ( 2a - 3b )3 - 23

= ( 2a - 3b - 2 )[ ( 2a - 3b )2 + 2( 2a - 3b ) + 4 ]

= ( 2a - 3b - 2 )( 4a2 - 12ab + 9b2 + 4a - 6b + 4 )

Khách vãng lai đã xóa
linh phung
4 tháng 12 2020 lúc 20:49

Giúp tui vs

Khách vãng lai đã xóa
Nguyễn Hoàng Phúc
Xem chi tiết
Cô Hoàng Huyền
24 tháng 11 2017 lúc 9:40

\(R=\frac{3a^2-2ab-b^2}{2a^2+ab-b^2}:\frac{3a^2-4ab+b^2}{3a^2+2ab-b^2}\)

\(R=\frac{3a^2-2ab-b^2}{2a^2+ab-b^2}.\frac{3a^2+2ab-b^2}{3a^2-4ab+b^2}\)

\(R=\frac{\left(3a+b\right)\left(a-b\right)}{\left(a+b\right)\left(2a-b\right)}.\frac{\left(a+b\right)\left(3a-b\right)}{\left(a-b\right)\left(3a-b\right)}\)

\(R=\frac{3a+b}{2a-b}\)

ichigo
Xem chi tiết
zZz Cool Kid_new zZz
29 tháng 12 2019 lúc 16:47

Hình như đề sai.Sửa đề luôn nha !

\(ĐKXĐ:x\ne\pm2\)

\(A=\left(\frac{x}{x^2-4}-\frac{2}{x-2}+\frac{1}{x+2}\right):\left(x-2+\frac{10-x^2}{x+2}\right)\)

\(=\left(\frac{x}{\left(x-2\right)\left(x+2\right)}-\frac{2\left(x+2\right)}{\left(x-2\right)\left(x+2\right)}+\frac{x-2}{\left(x-2\right)\left(x+2\right)}\right):\frac{\left(x-2\right)\left(x+2\right)+10-x^2}{x+2}\)

\(=\frac{x-2x-4+x-2}{\left(x-2\right)\left(x+2\right)}:\frac{x^2-4+10-x^2}{x+2}\)

\(=\frac{-6}{\left(x-2\right)\left(x+2\right)}\cdot\frac{x+2}{-6}=\frac{1}{x-2}\)

b

Để \(A< 0\Rightarrow\frac{1}{x-2}< 0\Rightarrow x-2< 0\Rightarrow x< 2\)

c

Để A nguyên thì \(\frac{1}{x-2}\) nguyên

\(\Rightarrow1⋮x-2\)

\(\Rightarrow x-2\in\left\{1;-1\right\}\Rightarrow x\in\left\{3;1\right\}\)

Khách vãng lai đã xóa
Hùng Cường Pro
Xem chi tiết
Nguyễn Cảnh Tùng
Xem chi tiết
Agatsuma Zenitsu
29 tháng 2 2020 lúc 21:11

\(A=\left[\frac{1}{a^2}+\frac{1}{b^2}+\frac{2}{a+b}\left(\frac{1}{a}+\frac{1}{b}\right)\right].\frac{ab}{\left(a+b\right)^2}\)

\(=\left(\frac{1}{a}+\frac{1}{b}\right)^2.\frac{ab}{\left(a+b\right)^2}\)

\(=\frac{1}{ab}\)

\(B=\left[\frac{1}{\left(2x-y\right)^2}+\frac{2}{4x^2-y^2}+\frac{1}{\left(2x+y\right)^2}\right].\frac{4x^2+14xy+y^2}{16x}\)

\(=\frac{\left(2x+y\right)^2+2\left(2x+y\right)\left(2x-y\right)+\left(2x-y\right)^2}{\left(2x+y\right)^2.\left(2x-y\right)^2}.\frac{\left(2x+y\right)^2}{16x}\)

\(=\frac{\left(2x+y+2x-y\right)^2}{\left(2x+y\right)^2.\left(2x-y\right)^2}.\frac{\left(2x+y\right)^2}{16x}\)

\(=\frac{x}{\left(2x-y\right)^2}\)

Khách vãng lai đã xóa
Lê Thị Nhung
29 tháng 2 2020 lúc 21:55

\(A=\left[\frac{1}{a^2}+\frac{1}{b^2}+\frac{2}{a+b}.\left(\frac{1}{a}+\frac{1}{b}\right)\right].\frac{ab}{\left(a+b\right)^2}\)

ĐK: a, b khác 0, a khác -b

\(A=\left[\frac{1}{a^2}+\frac{1}{b^2}+\frac{2}{a+b}.\left(\frac{a+b}{ab}\right)\right].\frac{ab}{\left(a+b\right)^2}\)

\(A=\left[\frac{1}{a^2}+\frac{1}{b^2}+\frac{2}{ab}\right].\frac{ab}{\left(a+b\right)^2}=\left(\frac{1}{a}+\frac{1}{b}\right)^2.\frac{ab}{\left(a+b\right)^2}\)

\(A=\frac{\left(a+b\right)^2}{ab}.\frac{ab}{\left(a+b\right)^2}=1\)

 \(B=\left[\frac{1}{\left(2x-y\right)^2}+\frac{2}{\left(4x^2-y^2\right)}+\frac{1}{\left(2x+y\right)^2}\right].\frac{4x^2+4xy+y^2}{16xy}\)

ĐK: xy khác 0, y  \(\ne\pm\)2x

\(B=\left[\frac{1}{\left(2x-y\right)^2}+\frac{2}{\left(2x-y\right).\left(2x+y\right)}+\frac{1}{\left(2x+y\right)^2}\right].\frac{\left(2x+y\right)^2}{16xy}\)

\(B=\left[\frac{1}{\left(2x-y\right)}+\frac{1}{\left(2x+y\right)}\right]^2.\frac{\left(2x+y\right)^2}{16xy}\)

\(B=\left(\frac{2x+y+2x-y}{\left(2x-y\right).\left(2x+y\right)}\right)^2.\frac{\left(2x+y\right)^2}{16xy}\)

\(B=\frac{16x^2}{\left(2x-y\right)^2.\left(2x+y\right)^2}.\frac{\left(2x+y\right)^2}{16xy}\)

\(B=\frac{x}{\left(2x-y\right)^2.y}\)

Khách vãng lai đã xóa
Lê Thị Nhung
29 tháng 2 2020 lúc 23:06

Mình nhầm đề nhé. Làm lại như sau

\(A=\left[\frac{1}{a^2}+\frac{1}{b^2}+\frac{2}{a+b}.\left(\frac{1}{a}+\frac{1}{b}\right)\right].\frac{ab}{\left(a+b\right)^2}\)

\(A=\left[\frac{1}{a^2}+\frac{1}{b^2}+\frac{2}{a+b}.\left(\frac{a+b}{ab}\right)\right].\frac{ab}{\left(a+b\right)^2}\)

\(A=\left[\frac{1}{a^2}+\frac{1}{b^2}+\frac{2}{ab}\right].\frac{ab}{\left(a+b\right)^2}\)

\(A=\left[\frac{1}{a}+\frac{1}{b}\right]^2.\frac{ab}{\left(a+b\right)^2}\)=\(\frac{\left(a+b\right)^2}{\left(ab\right)^2}.\frac{ab}{\left(a+b\right)^2}=\frac{1}{ab}\)

\(B=\left[\frac{1}{\left(2x-y\right)^2}+\frac{2}{\left(2x+y\right).\left(2x-y\right)}+\frac{1}{\left(2x+y\right)^2}\right].\frac{4x^2+4xy+y^2}{16x}\)

\(B=\left[\frac{1}{\left(2x-y\right)}+\frac{1}{\left(2x+y\right)}\right]^2.\frac{\left(2x+y\right)^2}{16x}\)

\(B=\left[\frac{2x+y-2x-y}{\left(2x-y\right).\left(2x+y\right)}\right]^2.\frac{\left(2x+y\right)^2}{16x}\)

\(B=\frac{\left(4x\right)^2}{\left(2x-y\right)^2.\left(2x+y\right)^2}.\frac{\left(2x+y\right)^2}{16x}\)

\(B=\frac{16.x^2}{\left(2x-y\right)^2.\left(2x+y\right)^2}.\frac{\left(2x+y\right)^2}{16x}=\frac{x}{\left(2x-y\right)^2}\)

Khách vãng lai đã xóa
hoàng thị hoa
Xem chi tiết
Hoàng Thanh Tuấn
31 tháng 5 2017 lúc 10:36
Đk : \(\hept{\begin{cases}x-3\ne0\\x-2\ne0\\x+2\ne0\end{cases}\Leftrightarrow\hept{\begin{cases}x\ne0\\x\ne-2\\x\ne2\end{cases}}}\)\(P=\frac{\left(2+x\right)^2+4x^2-\left(2-x\right)^2}{\left(x-2\right)\left(x+2\right)}.\frac{x^2\left(2-x\right)}{x\left(x-3\right)}\)\(\Rightarrow P=\frac{8x+4x^2}{\left(x-2\right)\left(x+2\right)}.\frac{x\left(2-x\right)}{x-3}\)\(\Rightarrow p=\frac{4x\left(x+2\right)}{\left(x+2\right)\left(x-2\right)}.\frac{x\left(x-2\right)}{3-x}=\frac{4x^2}{3-x}\)\(|x-5|=2\)nếu \(x\ge5\)=> x-5=2 =>x=7 (TM) => \(P=\frac{4.7^2}{-7+3}=-49\)Nếu \(x< 5\)=> x-5 = -2 => x = 3 Loại
Nguyễn Ngọc Mai
Xem chi tiết
your heart your love is...
Xem chi tiết