a chia hết cho m, b chia hết cho n , (a*b) không chia hết cho (n*m)
a=?
b=?
m=?
n=?
1. Chỉ ra ba số tự nhiên m, n, p thỏa mãn các điều kiện sau: m không chia hết cho p và n cũng không chia hết cho p nhưng m+n chia hết cho p
2. Cho a và b là hai số tự nhiên. Giải thích tại sao nếu (a+b) chia hết m và a chia hết cho m thì b chia hết cho m.
1.
Ta có thể đưa ra nhiều bộ ba số thỏa mãn yêu cầu bài toán như sau:
+ Ví dụ 1. Các số 7; 9 và 2.
Ta có 7 không chia hết cho 2 và 9 cũng không chia hết cho 2 nhưng 7 + 9 = 16 lại chia hết cho 2.
+ Ví dụ 2. Các số 13; 19 và 4.
Ta có 13 không chia hết cho 4 và 19 cũng không chia hết cho 4 nhưng 13 + 19 = 32 lại chia hết cho 4.
+ Ví dụ 3. Các số 33; 67 và 10.
Ta có 33 không chia hết cho 10 và 67 cũng không chia hết cho 10 nhưng 33 + 67 = 100 lại chia hết cho 10.
Tương tự, các em có thể đưa ra các bộ ba số khác nhau thỏa mãn yêu cầu bài toán.
Qua bài tập 6 này, ta rút ra nhận xét như sau:
Nếu m chia hết cho p và n chia hết cho p thì tổng m + n chia hết cho p nhưng điều ngược lại chưa chắc đã đúng.
Nếu tổng m + n chia hết cho p thì chưa chắc m chia hết cho p và n chia hết cho p.
2.
Vì (a+b)⋮ma+b ⋮ m nên ta có số tự nhiên k (k≠0)k≠0 thỏa mãn a + b = m.k (1)
Tương tự, vì a⋮ma ⋮ m nên ta cũng có số tự nhiên h(h≠0)h≠0 thỏa mãn a = m.h
Thay a = m. h vào (1) ta được: m.h + b = m.k
Suy ra b = m.k – m.h = m.(k – h) (tính chất phân phối của phép nhân với phép trừ).
Mà m⋮mm⋮m nên theo tính chất chia hết của một tích ta có m(k−h)⋮mmk-h ⋮ m
Vậy b⋮m.b ⋮ m.
: Khẳng định đúng trong các khẳng định sau là:
A.( m + n) chia hết cho 2 và m không chia hết cho 2 thì n không chia hết cho 2
B. ( m + n) chia hết cho 3 và m không chia hết cho 3 thì n không chia hết cho 3
C. Nếu a không chia hết cho m và b không chia hết cho m thì tổng ( a + b) không chia hết cho m
D. Nếu a chia hết cho m ; b không chia hết cho m thì tổng ( a + b) chia hết cho m
cứu mai nộp r
phát biểu thành lời các công thức sau
m=a.b => m chia hết cho a , m chia hết cho b
m chia hết cho a=> m = a.k
m chia hết cho a ; a chia hết cho b =>m chia hết cho b
m chia hết cho a ; n chia hết cho a =>(m+n)chia hết cho a
m chia hết cho a => m.k chia hết cho a
nếu a.b chia hết cho k và \(\frac{a}{k}\)tối giản=> b chia hết cho k
nếu m chia hết cho a , m chia hết cho b,\(\frac{a}{b}\)tối giản => m chia hết cho ( a.b )
M chia hết cho , n chia hết cho b => m.n chia hết cho ( a+b )
Công thức nào đúng hay cả hai công thức
a chia hết cho m và b chia hết cho thì a*b chia hết cho m*n
a chia hết cho m và b chia hết cho m thì a chia hết cho m*n [(m,n)]
Cho m= abba.Tìm m
a) m không chia hết cho 2; m chia 5 dư 3 và ab+ba=99
b) m chia hết cho 2; m chia 5 dư 3 và b-a chia hết cho 5
bài 2
a) Chứng minh rằng với mọi số tự nhiên n thuộc N thì (n+4).(n+9) chia hết cho 2
b) Chứng minh rằng abba chia hết cho 11
1
a,cho tổng A =20+125+350+x
Tìm điều kiện của x để: A chia hết cho 5; A không chia hết cho 5; A chia hết cho 2; A không chia hết cho 2
b,Phép chia n:12 có số dư 8.Hỏi n chia hết cho 4 không ; n chia hết cho 6 không
c,Phép chia m:36 có số dư 28.Hỏi m chia hết cho 2 không ; m chia hết cho 4 không
d,Chứng tỏ rằng với mọi n thuộc N thì 60n + 45 : (chia hết) 15 , nhưng không chia hết cho 30
a, Cho tổng A = 125 mũ 100 + 350 + x
Tìm điều kiện của x để A chia hết cho 5 ; để A không chia hết cho 5 ; để A chia hết cho 2 ; để A không chia hết cho 2
b, phép chia n:12 có số dư là 9. Hỏi n chia hết cho 3 không ? n chia hết cho 4 không ?
c, phép chia m:36 có số dư là 18. Hỏi m:(chia hết) cho 4 không; m chia hết cho 9 không
d,Chứng tỏ rằng với mọi n thuộc N thì 54n + 36 :(chia hết) 18, nhưng không chia hết cho 30
Giúp với mọi người ơi! Mai mình phải nộp rồi
Bài 1: Cho A= 2 . 4 . 6 . 8 . 10 . 12 + 40
a) C/m A chia hết cho 8 b) C/m A chia hết cho 5 c) C/m A chia hết cho 6
Bài 2: Tìm n thuộc N sao cho
a) n + 5 chia hết cho n b) 3n + 7 chia hết cho n
c) n + 7 chia hết cho n + 3 d) 3n + 9 chia hết cho n - 1
e) 5n + 3 chia hết cho 7 - 2n
Bài 3: Cho A= 3 + 3^3 + 3^5 + ... + 3^1992
a) C/m A chia hết cho 13
b) C/m A chia hết cho 40
cho tổng M= 35a + 70b +14 ( với a,b N)
a) chứng tỏ M chia hết cho 7
b) chứng tỏ M không chia hết cho 5
\(a,M=35a+70b+14=7\left(5a+10b+2\right)⋮7\left(đpcm\right)\\ b,M=5\left(7a+14b+2\right)+4\\ Mà:4⋮̸5\Rightarrow5\left(7a+14b+2\right)+4⋮̸5\\ \Rightarrow M⋮̸5\left(đpcm\right)\)