số dư của \(A=2017^{2016}:2015^{2014}\) là___________
số dư của A = 2017^2016 - 2015 ^2014 khi chia cho 5
20174n có tận cùng là 1 ; 2015n có tận cùng là 5.
Ta có: A = 20172016-20152014 = 20174.504-20152014 = (...1)-(...5) = (...6)
A có chữ số tận cùng là 6 nên khi chia A cho 5 sẽ dư 1
Tinh A= 2014/2015+2015/2016+2016/2017+2017/2014 hay so sanh A voi 4
=(2014/2014)+(2015+2015)+(2016/2016)+(2017+2017)
=1+1+1+1
=4
vậy A=4 (4=4)
CHO A = 2014/(2014+2015) + 2015/(2015+2016) + 2016/(2016+2017)
chứng tỏ rằng giá trị biểu thức A ko phải là số nguyên
so sánh P và Q biết : P= 2014/2015 + 2015/2016 + 2016/2017 và Q = 2014 + 2015 +2016/ 2015 +2016 + 2017
So sánh 2 phân số sau\(\frac{2014+2015+2016}{2015+2016+2017}\) và \(\frac{2014}{2015}+\frac{2015}{2016}+\frac{2016}{2017}\)
2014+2015+2016/2015+2016+2017<2014/2015+2015/2016+2016/2017
ss: 2016/2017+2017/2016 và 2014/2015+2015/2014
so sánh
(2016/2017)/(2017/2016) và (2014/2015)/(2015/2014)
Cho A= \(\frac{2014}{2015}+\frac{2015}{2016}+\frac{2016}{2017}+\frac{2017}{2014}.\). So sánh A với 4
\(A=\dfrac{2014}{2015}+\dfrac{2015}{2016}+\dfrac{2016}{2017}+\dfrac{2017}{2014}\\ =1-\dfrac{1}{2015}+1-\dfrac{1}{2016}+1-\dfrac{1}{2017}+1+\dfrac{1}{2014}+\dfrac{1}{2014}+\dfrac{1}{2014}\\ =\left(1+1+1+1\right)+\left[-\left(\dfrac{1}{2015}-\dfrac{1}{2014}+\dfrac{1}{2016}-\dfrac{1}{2014}+\dfrac{1}{2017}-\dfrac{1}{2014}\right)\right]\\ =4+\left[-\left(\dfrac{1}{2015}-\dfrac{1}{2014}+\dfrac{1}{2016}-\dfrac{1}{2014}+\dfrac{1}{2017}-\dfrac{1}{2014}\right)\right]\)
Vì \(\dfrac{1}{2015}< \dfrac{1}{2014}\), \(\dfrac{1}{2016}< \dfrac{1}{2014}\), \(\dfrac{1}{2017}< \dfrac{1}{2014}\)
\(\Rightarrow\left(\dfrac{1}{2015}-\dfrac{1}{2014}+\dfrac{1}{2016}-\dfrac{1}{2014}+\dfrac{1}{2017}-\dfrac{1}{2014}\right)< 0\\ \Rightarrow-\left(\dfrac{1}{2015}-\dfrac{1}{2014}+\dfrac{1}{2016}-\dfrac{1}{2014}+\dfrac{1}{2017}-\dfrac{1}{2014}\right)\\>0\\ \Rightarrow4+\left[-\left(\dfrac{1}{2015}-\dfrac{1}{2014}+\dfrac{1}{2016}-\dfrac{1}{2014}+\dfrac{1}{2017}-\dfrac{1}{2014}\right)\right]>4\)
1) CMR : A=(n+2015)(n+2016) + n2 + n chia hết cho 2 với n ϵ N
2) So sánh :
P = \(\frac{2013}{2014^{2013}}+\frac{2014}{2015^{2014}}+\frac{2015}{2016^{2015}}+\frac{2016}{2017^{2016}}\) và
Q = \(\frac{2014}{2017^{2016}}+\frac{2013}{2016^{2015}}+\frac{2016}{2015^{2014}}+\frac{2015}{2014^{2013}}\)
A = (n + 2015)(n + 2016) + n2 + n
= (n + 2015)(n + 2015 + 1) + n(n + 1)
Tích 2 số tự nhiên liên tiếp luôn chia hết cho 2
=> (n + 2015)(n + 2015 + 1) chia hết cho 2
n(n + 1) chia hết cho 2
=> (n + 2015)(n + 2015 + 1) + n(n + 1) chia hết cho 2
=> A chia hết cho 2 với mọi n \(\in\) N (đpcm)