Tính diện tích hình vành khuyên giới hạn bởi hai đường tròn (O; 10 cm) và (O; 20 cm) (kết quả làm tròn đến hàng phần trăm).
Diện tích hình vành khăn giới hạn bởi hai đường tròn (O;8cm) và (O;4cm) là .... n(cm2)
Diện tích của hình vành khăn giới hạn bởi 2 đường tròn (O;5cm) và (O;4cm) là
48 pi nhaaaaaaaaaaaaaaaaaaa
Diện tích vành khăn giới hạn bởi hai đường tròn (O; 10cm) và (O; 6cm) là:
Diện tích vành khăn giới hạn bởi hai đường tròn (O; 4cm) và (O; 3cm) là:
Cho 2 đường tròn đồng tâm O. Vẽ tiếp tuyến tại A của đường tròn (O) nhỏ. Tiếp tuyến này cắt đường tròn (O) lớn tại 2 điểm B và C. Chứng minh rằng diện tích của hình vành khuyên tạo bởi 2 đường tròn đồng tâm O bằng diện tích của đường tròn (A;AB)
Gọi bán kính hình tròn lớn r ; bán kính hình tròn nhỏ : r1
Diện tích vành khuyên : S = \(r^2.\pi-r_1^2.\pi=\pi\left(r^2-r_1^2\right)\)
Lại có diện tích hình tròn (A;AB) S1 = AB2.\(\pi\) = (BO2 - AO2).\(\pi=\left(r^2-r_1^2\right).\pi\)
=> S = S1 (đpcm)
Đường trỏn nhỏ bán kính OA, đường tròn lớn bán kính OB
Mặt khác do BC là tiếp tuyến đường tròn nhỏ
\(\Rightarrow OA\perp BC\)
\(\Rightarrow A\) là trung điểm BC
\(\Rightarrow AB^2=OB^2-OA^2\)
Diện tích hình vành khuyên:
\(S_1=S_{\left(O;OB\right)}-S_{\left(O;OA\right)}=\pi OB^2-\pi.OA^2=\pi\left(OB^2-OA^2\right)\)
\(S_{\left(A;AB\right)}=\pi.AB^2=\pi\left(OB^2-OA^2\right)\)
\(\Rightarrow S_1=S_{\left(A;AB\right)}\) (đpcm)
Bằng diện tích của hình tròn (A;AB)
Cho tam giác ABC nội tếp đường tròn (O; 6cm). Tính diện tích hình quạt tròn giới hạn bởi hai bán kính OA, OC và cung nhỏ AC khi A B C ^ = 60 0
Cho tam giác ABC nội tiếp đường tròn (O; 3cm). Tính diện tích hình quạt tròn giới hạn bởi hai bán kính OA, OC và cung nhỏ AC khi A B C ^ = 40 0
Cho đường tròn tâm O, bán kính R=3 cm và hai điểm A,B nằm trên đường tròn (O) sao cho số đo cung lớn bằng 240°. Tính diện tích hình quạt tròn giới hạn bởi hai bán kính OA, OB vsf cung nhỏ AB.
Cho tam giác ABC nội tiếp đường tròn tâm O, bán kính R = 3cm. Tính diện tích hình tròn giới hạn tạo bởi hai bán kính OB,OC và cung nhỏ BC khi \(\widehat{BAC}=60^0\)
\(\widehat{BAC}=60^o\Rightarrow\widehat{BOC}=120^o\). Diện tích cần tìm là \(\pi\).32-1/2.3.3.sin120o=9\(\pi\)-9\(\sqrt{3}\)/4 (cm2)\(\approx\)24,38 (cm2).