Cho tam giác ABC biết B-C = 40 độ. Tia p/g của góc A cắt cạnh BC tại M. Từ trung diểm D, kẻ đường thẳng vuông góc với BC. Nó cắt AC ở E. Tìm số đo của góc ABE
1/ cho tam giác ABC biết B-C = 40 độ
a/ tia phân giác của góc A cắt cạnh BC tại M. tính AMC
b/ từ trung điểm D của góc A cắt cạnh BC dựng đường thẳng vuông góc BC cắt AC ở E. tính ABE
Cho tam giác ABC vuông góc tại A,có AB= 3cm, AC= 4cm.
a) Tính độ dài cạnh BC?
b) Kẻ tia phân giác của góc B cắt C tại E, từ E kẻ tia Ex vuông góc với BC cắt BC tại H. Chưng minh tam giác ABE= tam giác HBE .
c) Kẻ đường thẳng HE cắt đường thẳng AB tại D . Chứng minh BE là đường trung trực của DC
Mọi người ơi giải giúp mình bài tập trên với
Cho tam giác ABC cân ở A. Trên cạnh BC lấy điểm D, trên tia đối của tia CB lấy điểm E sao cho BD=CE. Từ D kẻ đường thẳng vuông góc với BC cắt AB tại M, từ E kẻ đường thẳng vuông góc với BC cắt AC ở N.
a. C/m MD=NE
b. MN cắt DE ở I.C/m I là trung điểm của DE
c. Từ C kẻ đường thẳng vuông góc với AC, từ B kẻ đường thẳng vuông góc với AB chúng cắt nhau tại O. Chứng minh AO là đường trung trực của BC
Cho tam giác ABC cân ở A. Trên cạnh BC lấy điểm D, trên tia đối của tia CB lấy điểm E sao cho BD CE. Từ D kẻ đường thẳng vuông góc với BC cắt AB tại M, từ E kẻ đường thẳng vuông góc với BC cắt AC ở N
.a. C m MD NE
b. MN cắt DE ở I.C m I là trung điểm của DE
c. Từ C kẻ đường thẳng vuông góc với AC, từ B kẻ đường thẳng vuông góc với AB chúng cắt nhau tại O. Chứng minh AO là đường trung trực của BC
a/ Ta có \(\widehat{NCE}=\widehat{ACB}\) (góc đối đỉnh) mà \(\widehat{ACB}=\widehat{ABC}\) (do tg ABC cân tại A) \(\Rightarrow\widehat{ABC}=\widehat{NCE}\)
Xét tg vuông MBD và tg vuông NCE có
BD=CE (đề bài) và \(\widehat{ABC}=\widehat{NCE}\left(cmt\right)\) => tg MBD = tg NCE (hai tg vuông có cạnh góc vuông và 1 góc nhọn tương ứng = nhau thì bằng nhau) => MD=NE
b/ Xét tứ giác MEND có
\(MD\perp BC;NE\perp BC\) => MD//NE
MD=NE (cmt)
=> Tứ giác MEND là hình bình hành (Tứ giác có cặp cạnh đối song song và bằng nhau thì tứ giác đó là hbh)
MN và DE là 2 đường chéo của hbh MEND => I là trung điểm của DE (trong hbh 2 đường chéo cắt nhau tại trung điểm mỗi đường)
c/ ta có
\(\widehat{ABC}=\widehat{ACB}\)
\(\widehat{ABO}=\widehat{ABC}+\widehat{CBO}=90^o\)
\(\widehat{ACO}=\widehat{ACB}+\widehat{BCO}=90^o\)
\(\Rightarrow\widehat{CBO}=\widehat{BCO}\) => tam giác BOC cân tại O => BO=CO
Xét tg vuông ABO và tg vuông ACO có
AB=AC (Do tg ABC cân tại A)
BO=CO (cmt)
\(\widehat{ABO}=\widehat{ACO}=90^o\)
=> tg ABO = tg ACO (c.g.c) \(\Rightarrow\widehat{BAO}=\widehat{CAO}\) => AO là phân giác của \(\widehat{BAC}\)
=> BO là đường trung trực của BC (Trong tg cân đường phân giác của góc ở đỉnh đồng thời là đường cao, đường trung trực)
Cho tam giác ABC cân ở A. Trên cạnh BC lấy điểm D, trên tia đối của tia CB lấy điểm E sao cho BD=CE.Từ D kẻ đường thẳng vuông góc với BC cắt AB ở M,từ E kẻ đường thẳng vuông góc với BC cắt AC ở N.
a)Chứng minh MD=NE
b)MN cắt DE ở I.Chứng minh I là trung điểm của DE
c)Từ C kẻ đường thẳng vuông góc với AC,từ B kẻ đường thẳng vuông góc với AB chúng cắt nhau tại O.Chứng minh AO là đường trung trực của BC
Cho ABC vuông tại B có A = 500
a/ Tính số đo của góc C
b/ Trên cạnh AC lấy điểm D sao cho AD = AB. Tia phân giác của góc A cắt cạnh BC ở E. Chứng minh: ABE = ADE.
c/ Qua A kẻ đường thẳng d vuông góc với AB. Từ B kẻ đường thẳng song song với EA cắt đường thẳng d tại F. Chứng minh: ABE = BAF
Cho ABC vuông tại B có A = 500
a/ Tính số đo của góc C
b/ Trên cạnh AC lấy điểm D sao cho AD = AB. Tia phân giác của góc A cắt cạnh BC ở E. Chứng minh: ABE = ADE.
c/ Qua A kẻ đường thẳng d vuông góc với AB. Từ B kẻ đường thẳng song song với EA cắt đường thẳng d tại F. Chứng minh: ABE = BAF
Bài 1: Tam giác ABC cân tại A ( góc A > 90 độ). Hai đường cao BD và CE cắt nhau tại H. Tia AH cắt BC tai I
a) Chứng minh tam giác ABD = tam giác ACE
b) Chứng minh I là trung điểm của BC
c) Từ C kẻ đường thẳng d vuông góc với AC. d cắt đường thẳng AH tại F. Chứng minh CB là tia phân giác của góc FCH
d) Giả sử góc BAC = 60 độ, AB = 4cm. Tính khoảng cách từ B đến đường thẳng CF
Bài 2: Tam giác ABC vuông tại A có AB = 9cm, AC = 12cm. Trên cạnh BC lấy điểm D sao cho BD = BA. Kẻ đường thẳng qua D vuông góc với BC, đường thẳng này cắt AC ở E và cắt AB ở K
a) Tính độ dài cạnh BC
b) Chứng minh tam giác ABE = tam giác DBE. Suy ra BE là tia phân giác góc ABC
c) Chứng minh AC = DK
d) Kẻ đường thẳng qua A vuông góc với BC tại H. Đường thẳng này cắt BE tại M. Chứng minh tam giác AME cân
Các bạn làm hộ mình nha, mình cần gấp lắm
nhìu zữ giải hết chắc chết!!!
758768768978980
Khẩn cấp!!! Giúp mk vs mọi người ơi!
Cho tam giác ABC có góc B - góc C =40 độ
a, Tia phân giác của A cắt BC tại M. Tính góc AMC
b, Từ trung điểm D của BC kẻ đuogừ thẳng vuông góc vs BC cắt cạnh AC tại F. Tính góc ABE
Đề sai sai k có góc A tính bằng đuôi ai bt đc góc A bằng bao nhiêu thì mik giải cho
Bài làm
Xét ∆ ABC
Ta có: A+B+C=180° ( định lí tổng ba góc của tam giác )
Mà B=C=40°
=> A+40°+40°=180°
=> A=180°-40°-40°
=> A=100°
VÌ AC là tia phân giác của góc A
=> MAC=A.1/2=100.1/2=50°
Xét ∆ ABC
Ta có: MAC + AMC + C =180° ( định lí tổng ba góc của tam giác )
hay 50° + AMC +40° = 180°
=> AMC =180°-50°-40°
=> AMC = 90°
Vậy AMC =90°
a) Ta có: góc B - góc C = 40 độ
=> 40 độ + góc C = góc B
Trong tam giác ABC, có:
góc A + góc B + góc C = 180 độ ( tổng số đo 3 góc trong tam giác )
góc A + ( 40 độ + góc C ) + góc C = 180 độ
góc A + 40 độ + 2. góc C = 180 độ
góc A + 2. góc C = 140 độ
góc A + góc C = 70 độ
=> góc B = 110 độ
Trong tam giác AMC có:
góc A + góc M + góc C = 180 độ ( tổng 3 góc trong tam giác )
( góc A + góc C ) + góc M = 180 độ
70 độ + góc M = 180 độ
góc M = 110 độ
=> góc AMC = 110 độ